Acquired growth hormone deficit within FanconiBickel syndrome

From Selfless
Revision as of 13:27, 21 October 2024 by Eggnogpin50 (talk | contribs) (Created page with "Moreover, the coupled application of compost and PGPR reduced the uptake of Na and resulted in an increment in superoxide dismutase (SOD), catalase (CAT), and peroxidase (POX)...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Moreover, the coupled application of compost and PGPR reduced the uptake of Na and resulted in an increment in superoxide dismutase (SOD), catalase (CAT), and peroxidase (POX) activities that lessened oxidative damage and improved the nutrient uptake (N, P, and K) of deficiently irrigated wheat plants under soil salinity. It was concluded that to protect wheat plants from environmental stressors, such as water stress and soil salinity, co-application of compost with PGPR was found to be effective.Doubled haploid (DH) technology in maize takes advantage of in vivo haploid induction (HI) triggered by pollination of donors of interest with inducer genotypes. However, the ability of different donors to be induced-inducibility (IND), varies among germplasm and the underlying molecular mechanisms are still unclear. In this study, the phenotypic variation for IND in a mapping population of temperate inbred lines was evaluated to identify regions in the maize genome associated with IND. A total of 247 F23 families derived from a biparental cross of two elite inbred lines, A427 and CR1Ht, were grown in three different locations and Inclusive Composite Interval Mapping (ICIM) was used to identify quantitative trait loci (QTL) for IND. In total, four QTL were detected, explaining 37.4% of the phenotypic variance. No stable QTL was found across locations. The joint analysis revealed QTL × location interactions, suggesting minor QTL control IND, which are affected by the environment.Powdery mildew is one of the severe diseases on common bean in Southwestern China, but the identity of the pathogen inciting this disease is unclear. The objective of this study was to identify the causal agent of common bean powdery mildew and to screen resistant cultivars. The pathogen was identified through morphological identification, molecular phylogenetic analysis, and pathogenicity tests. Resistance of common bean cultivars was evaluated by artificial inoculation at the seedling stage. The common bean powdery mildew isolate CBPM1 was obtained after pathogen isolation and purification. Morphological identification confirmed that the isolate CBPM1 belonged to the Oidium subgenus Pseudoidium and germinated Pseudoidium-type germ tubes. Molecular phylogenetic analysis showed that the isolate CBPM1 and Erysiphe vignae isolates from different hosts were clustered into a distinct group. The pathogenicity and host range tests revealed that the isolate CBPM1 was strongly pathogenic to common bean, multiflora bean, lablab bean, cowpea, and mung bean, but not to soybean, adzuki bean, pea, faba bean, chickpea, lentil, pumpkin, and cucumber. In addition, 54 common bean cultivars were identified for resistance to powdery mildew, and 15 were resistant or segregant. Based on the morphological, molecular and pathogenic characteristics, the causal agent of common bean powdery mildew was identified as E. vignae. This is the first time E. vignae has been confirmed on common bean. Cultivars with different resistance levels were screened, and these cultivars could be used for disease control or the breeding of new resistant cultivars.As sessile organisms, plants exhibit extraordinary plasticity and have evolved sophisticated mechanisms to adapt and mitigate the adverse effects of environmental fluctuations. Heterotrimeric G proteins (G proteins), composed of α, β, and γ subunits, are universal signaling molecules mediating the response to a myriad of internal and external signals. Numerous studies have identified G proteins as essential components of the organismal response to stress, leading to adaptation and ultimately survival in plants and animal systems. In plants, G proteins control multiple signaling pathways regulating the response to drought, salt, cold, and heat stresses. G proteins signal through two functional modules, the Gα subunit and the Gβγ dimer, each of which can start either independent or interdependent signaling pathways. Improving the understanding of the role of G proteins in stress reactions can lead to the development of more resilient crops through traditional breeding or biotechnological methods, ensuring global food security. In this review, we summarize and discuss the current knowledge on the roles of the different G protein subunits in response to abiotic stress and suggest future directions for research.Streptomyces are recognized as antipathogenic agents and plant-growth-promoting rhizobacteria. The objective of this study was to evaluate the capacities of four antifungal Streptomyces strains to produce the substances that are involved in plant growth; solubilize phosphates; and fix nitrogen. The effects of the volatile organic compounds (VOCs) that are emitted by these strains on the growth promotion of Arabidopsis thaliana and Phaseolus vulgaris L. MS1943 (var. Pinto Saltillo) seedlings were also tested. All of the Streptomyces strains produced indole-3-acetic acid (IAA) (10.0 mg/L to 77.5 mg/L) and solubilized phosphates, but they did not fix nitrogen. In vitro assays showed that the VOCs from Streptomyces increased the shoot fresh weights (89-399%) and the root fresh weights (94-300%) in A. thaliana seedlings; however, these effects were less evident in P. vulgaris. In situ experiments showed that all the Streptomyces strains increased the shoot fresh weight (11.64-43.92%), the shoot length (11.39-29.01%), the root fresh weight (80.11-140.90%), the root length (40.06-59.01%), the hypocotyl diameter (up to 6.35%), and the chlorophyll content (up to 10.0%) in P. vulgaris seedlings. 3-Methyl-2-butanol had the highest effect among the ten pure VOCs on the growth promotion of A. thaliana seedlings. The tested Streptomyces strains favored biomass accumulation in A. thaliana and P. vulgaris seedlings.Skin aging is a natural process influenced by intrinsic and extrinsic factors, and many skin anti-aging strategies have been developed. Plants from the genus Potentilla has been used in Europe and Asia to treat various diseases. Potentilla paradoxa Nutt. has been used as a traditional medicinal herb in China and has recently been shown to have anti-inflammatory effects. Despite the biological and pharmacological potential of Potentilla paradoxa Nutt., its skin anti-aging effects remain unclear. Therefore, this study evaluated the free radical scavenging, moisturizing, anti-melanogenic, and wound-healing effects of an ethanol extract of Potentilla paradoxa Nutt. (Pp-EE). Pp-EE was found to contain phenolics and flavonoids and exhibits in vitro antioxidant activities. α-Linolenic acid was found to be a major component of Pp-EE on gas chromatography-mass spectrometry. Pp-EE promoted the expression of hyaluronic acid (HA) synthesis-related enzymes and suppressed the expression of HA degradation-related enzymes in keratinocytes, so it may increase skin hydration. Pp-EE also showed inhibitory effects on the production and secretion of melanin in melanocytes. In a scratch assay, Pp-EE improved skin wound healing. Taken together, Pp-EE has several effects that may delay skin aging, suggesting its potential benefits as a natural ingredient in cosmetic or pharmaceutical products.The aim of the study was to estimate the impact of soil amendments (i.e., phosphogypsum and plant growth-promoting rhizobacteria (PGPR)) separately or their combination on exchangeable sodium percentage (ESP), soil enzymes' activity (urease and dehydrogenase), pigment content, relative water content (RWC), antioxidant enzymatic activity, oxidative stress, productivity, and quality of quinoa under deficient irrigation conditions in two field experiments during the 2019-2020 and 2020-2021 seasons under salt-affected soil. Results revealed that ESP, soil urease activity, soil dehydrogenase activity, leaf chlorophyll a, b, and carotenoids, leaf K content, RWC, SOD (superoxide dismutase), CAT (catalase), and POD (peroxidase) activities were declined, resulting in overproduction of leaf Na content, proline content, and oxidative stress indicators (H2O2, malondialdehyde (MDA) and electrolyte leakage) under water stress and soil salinity, which negatively influence yield-related traits, productivity, and seed quality of quinoa. However, amendment of salt-affected soil with combined phosphogypsum and seed inoculation with PGPR under deficient irrigation conditions was more effective than singular application and control plots in ameliorating the harmful effects of water stress and soil salinity. Additionally, combined application limited Na uptake in leaves and increased K uptake and leaf chlorophyll a, b, and carotenoids as well as improved SOD, CAT, and POD activities to ameliorate oxidative stress indicators (H2O2, MDA, and electrolyte leakage), which eventually positively reflected on productivity and quality in quinoa. We conclude that the potential utilization of phosphogypsum and PGPR are very promising as sustainable eco-friendly strategies to improve quinoa tolerance to water stress under soil salinity.The photoperiod plays a critical role in the control of flowering timing in soybean (Glycine max (L.) Merr.) with long days increasing the time to flowering. Early flowering cultivars have been developed from breeding programs for environments with long photoperiods; however, this effect is challenging to isolate in field experiments because of other environmental influences. Our experiment examined the effect of photoperiod on the node appearance rate and time to flower for 13 early maturing soybean cultivars ranging in maturity group (MG) between 000.9 and 1.3. Growth chambers were programmed to 14, 15, 16, and 17 h photoperiods and temperature was kept at 25 °C. The date of emergence and main stem node appearance were recorded until flowering. The node appearance rate was slowest for the first node and increased thereafter. All cultivars required more time to flowering in the longer photoperiod treatments and the later rated MG had the greatest sensitivity to photoperiod. A delay in time to flower from a longer photoperiod can delay maturity and expose the crop to fall frost that can reduce seed yield and quality. Understanding and documentation of soybean photoperiod sensitivity will help plant breeders develop suitable cultivars for environments with long photoperiods.In the extreme north of Chile, the genus Tillandsia L. (Bromeliaceae) is represented by three native species, T. marconae Till & Vitek and T. landbeckii Phil., both of terrestrial atmospheric habit, and T. virescens Ruiz & Pav. of saxicolous habit. There is little information on the foliar structures that allow its establishment in arid environments. Therefore, we studied the leaf anatomy of each of these terrestrial and saxicolous atmospheric species from different altitudinal levels (1000 and 3000 m) in the Arica and Parinacota regions of the Atacama Desert. All populations are monospecific. The study considered scanning electron microscopy, optical microscopy, and the fingernail polish technique. The surface distribution of stomata and trichomes of the species is described. The studied species presented hypostomatic leaves, with anomocytic stomata and peltate trichomes on the abaxial and adaxial sides. Trichomes are formed by a central disc of four equal-sized empty cells, surrounded by a peripheral series of several concentric rings, the innermost of eight, the second of sixteen and the outermost of multiple elongated cells, one cell thick, that form the flexible asymmetric wings.