Superior trichloroethylene biodegradation Jobs associated with biocharmicrobial collaboration beyond adsorption

From Selfless
Revision as of 07:10, 22 October 2024 by Indexfish91 (talk | contribs) (Created page with "Coefficient of thermal expansion of silicon is considered as a parameter with uncertainty. The warpage and the von Mises stress are calculated and compared with and without un...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Coefficient of thermal expansion of silicon is considered as a parameter with uncertainty. The warpage and the von Mises stress are calculated and compared with and without uncertainty.We present a highly stretchable and compact bow-tie antenna which operates at 5 GHz for wearable applications. The dimensions of the bow-tie antenna were 7.9 mm×17.8 mm. The stretchable antenna was fabricated with a composite mixture of silver flake and polymer binder. The composite paste was printed on polyurethane and textile using the screen printing technique. The RF performances, stretchability, bendability, and durability of the antennas were evaluated, which are critical requirements in wearable electronics. The stretchable bow-tie antennas showed excellent RF performances and stretchability up to a stretching strain of 40%. The antennas could be bent up to a bending radius of 20 mm without degrading RF performance. The stretchable antennas also exhibited outstanding mechanical endurance after 10,000 cyclic stretching tests. The antennas were not affected by the presence of the body and showed very stable RF performances, exhibiting promising results for mobile and wearable applications.In stretchable strain sensors, highly elastic elastomers such as polydimethylsiloxane (PDMS), Ecoflex, and polyurethane are commonly used for binder materials of the nanocomposite and substrates. However, the viscoelastic nature of the elastomers and the interfacial action between nanofillers and binders influence the critical sensor performances, such as repeatability, response, and hysteresis behavior. In this study, we developed a stretchable nanocomposite strain sensor composed of multiwalled carbon nanotubes and a silicone elastomer binder. The effects of binder and substrate materials on the repeatability, response, hysteresis behavior, and long-term endurance of the strain sensors were systematically investigated using stretching, bending, and repeated cyclic bending tests. Three different binder and substrate materials including PDMS, Ecoflex, and a mixture of PDMS/Ecoflex were tested. The stretchable strain sensors showed an excellent linearity and stretchability of more than 130%. Therefore, the lonbehavior, and excellent capability in detecting finger and wrist bending.This study explored the feasibility of a fast and uniform large-scale laser sintering method for sintering stretchable electrodes. A homogenized rectangular infrared (IR) laser with a wavelength of 980 nm was used in the sintering process. A highly stretchable composite electrode was fabricated using silver (Ag) microparticles and Ag flakes as the fillers and polyester resin as the binder on the polyurethane substrate. This laser-sintering method showed a sintering time of 1 sec and a very uniform temperature across the surface, resulting in enhancing the conductivity and stretchability of the electrodes. The effects of the laser power on the electrical and electromechanical properties of the electrodes were investigated. Using stretching, bending, and twisting tests, the feasibility of the laser-sintered stretchable electrodes was comprehensively examined. The electrode that was sintered at a laser power of 50 W exhibited superior stretchability at a strain of 210%, high mechanical endurance of 1,000 repeated cycles, and excellent adhesion. The stretchable electrodes showed excellent bendability and twistability in which the electrodes can be bent up to 1 mm and twisted up to 90° without any damage; thus, they are highly applicable as stretchable electrodes for wearable electronics. Additionally, the Ag composites were explored for use in a radio-frequency (RF) stretchable antenna to confirm the application of the laser-sintering method for stretchable and wearable electronic devices. The stretchable dipole antenna showed an excellent radiation efficiency of 95% and a highly stable operation, even when stretched to 90% strain.Recently, fine pitch wafer level packaging (WLP) technologies have drawn a great attention in the semiconductor industries. WLP technology uses various interconnection structures including microbumps and through-silicon-vias (TSVs). To increase yield and reduce cost, there is an increasing demand for wafer level testing. Contact behavior between probe and interconnection structure is a very important factor affecting the reliability and performance of wafer testing. In this study, with a MEMS vertical probe, we performed systematic numerical analysis of the deformation behavior of various interconnection structures, including solder bump, copper (Cu) pillar bump, solder capper Cu bump, and TSV. During probing, the solder ball showed the largest deformation. The Cu pillar bump also exhibited relatively large deformation. The Cu bump began to deform at OD of 10 μm. At OD of 20 μm, bump pillar was compressed, and the height of the bump decreased by 8.3%. The deformation behavior of the solder capped Cu bump was similar to that of the solder ball. At OD of 20 μm, the solder and Cu bumps were largely deformed, and the total height was reduced by 11%. The TSV structure showed the lowest deformation, but exerted the largest stress on the probe. In particular, copper protrusion at the outer edge of the via was observed, and very large shear stress was generated between the via and the silicon oxide layer. compound W13 solubility dmso In summary, when probing various interconnection structures, the probe stress is less than that when using an aluminum pad. On the other hand, deformation of the structure is a critical issue. In order to minimize damage to the interconnection structure, smaller size probes or less overdrive should be used. This study will provide important guidelines for performing wafer-level testing and minimizing damage of probes and interconnection structures.Phytosterols are sterols naturally occurring in plant cells and well known for their cholesterollowering activity, as witnessed by the large number of food supplements based on these functional ingredients available on the market. However, the marked hydrophobic character of phytosterols makes their solubility in biological fluids extremely low, with disadvantageous consequences on the bioavailability and therapeutic efficacy. In this work, we explore the effect of particle size reduction on the water solubility of stigmasterol, one of the most abundant phytosterols, through the formulation of nanocystals. A robust, top-down production process was employed to prepare stigmasterol nanocrystals, subsequently characterized by thermal and spectroscopic techniques. When formulated as nanocrystals, the solubility of stigmasterol in water and in simulated gastro-intestinal fluids was boosted compared to the raw material. The increased solubility of stigmasterol nanocrystals makes such formulation a promising candidate for the development of medicinal/nutraceutical products with enhanced bioavailability.