SABR pretreatment assessments utilizing alanine and also nanoDot dosimeters

From Selfless
Revision as of 11:32, 22 October 2024 by Guiltymetal32 (talk | contribs) (Created page with "Out of 1,591 records, 69 articles were utterly aligned with the specified inclusion criteria and were summarized in the relevant table. Most of the studies were devoted to BAC...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Out of 1,591 records, 69 articles were utterly aligned with the specified inclusion criteria and were summarized in the relevant table. Most of the studies were devoted to BACE1-AS, NEAT1, MALAT1, and SNHG1 lncRNAs, respectively, and about one-third of the studies investigated a unique lncRNA. About 56% of the studies reported up-regulation, and 7% reported down-regulation of lncRNAs expressions. Overall, this study was conducted to investigate the association between lncRNAs and Alzheimer's disease to make a reputable source for further studies and find more molecular therapeutic goals for this disease.Although many details remain unknown, several positive statements can be made about the laminar distribution of primate frontal eye field (FEF) neurons with different physiological properties. Most certainly, pyramidal neurons in the deep layer of FEF that project to the brainstem carry movement and fixation signals but clear evidence also support that at least some deep-layer pyramidal neurons projecting to the superior colliculus carry visual responses. Thus, deep-layer neurons in FEF are functionally heterogeneous. Despite the useful functional distinctions between neuronal responses in vivo, the underlying existence of distinct cell types remain uncertain, mostly due to methodological limitations of extracellular recordings in awake behaving primates. To substantiate the functionally defined cell types encountered in the deep layer of FEF, we measured the biophysical properties of pyramidal neurons recorded intracellularly in brain slices issued from macaque monkey biopsies. Here, we found that biophysical properties recorded in vitro permit us to distinguish two main subtypes of regular-spiking neurons, with, respectively, low-resistance and low excitability vs. high-resistance and strong excitability. These results provide useful constraints for cognitive models of visual attention and saccade production by indicating that at least two distinct populations of deep-layer neurons exist.Retrieval constitutes a highly regulated and dynamic phase in memory processing. Its rapid temporal scales require a coordinated molecular chain of events at the synaptic level that support transient memory trace reactivation. AMPA receptors (AMPAR) drive the majority of excitatory transmission in the brain and its dynamic features match the singular fast timescales of memory retrieval. Sodium L-ascorbyl-2-phosphate in vivo Here we provide a review on AMPAR contribution to memory retrieval regarding its dynamic movements along the synaptic compartments, its changes in receptor number and subunit composition that take place in activity dependent processes associated with retrieval. We highlight on the differential regulations exerted by AMPAR subunits in plasticity processes and its impact on memory recall.Background Social networks can modulate physiological responses, protects against the detrimental consequences of prolonged stress, and enhance health outcomes. Family ties represent an essential source of social networks among older adults. However, the impact of family support on cognitive performance and the biological factors influencing that relationship is still unclear. We aimed to determine the relationship between family support, cognitive performance and BDNF levels. Methods Cross-sectional data from three-hundred, eight-six individuals aged on average 60 years enrolled in the Health, Wellbeing and Aging Study (SABE), a population-cohort study, were assessed for family support, community support and cognitive performance. Structural and functional family support was evaluated based on family size and interactions allied to scores in the Family APGAR questionnaire. Community assistance (received or provided) assessed the community support. Cognitive performance was determined using the Mini-Mental State Examination (MMSE), verbal fluency (animals per minute) and backward digital span. Blood samples were obtained to determine BDNF levels. Results Multivariate analysis showed that functional family support, but not structural, was associated with higher MMSE, verbal fluency and digit span scores, even controlling for potential cofounders (p less then 0.001). Providing support to the community, rather than receiving support from others, was associated with better cognitive performance (p less then 0.001). BDNF concentration was not associated with community support, family function, or cognitive performance. Conclusion These findings suggest that emotional components of functional family and community support (e.g., loving and empathic relationship) may be more significant to cognitive health than size and frequency of social interactions.Substantia gelatinosa (SG) neurons, which are located in the spinal dorsal horn (lamina II), have been identified as the "central gate" for the transmission and modulation of nociceptive information. Rebound depolarization (RD), a biophysical property mediated by membrane hyperpolarization that is frequently recorded in the central nervous system, contributes to shaping neuronal intrinsic excitability and, in turn, contributes to neuronal output and network function. However, the electrophysiological and morphological properties of SG neurons exhibiting RD remain unclarified. In this study, whole-cell patch-clamp recordings were performed on SG neurons from parasagittal spinal cord slices. RD was detected in 44.44% (84 out of 189) of the SG neurons recorded. We found that RD-expressing neurons had more depolarized resting membrane potentials, more hyperpolarized action potential (AP) thresholds, higher AP amplitudes, shorter AP durations, and higher spike frequencies in response to depolarizing current injecttially process somatosensory information compared to those without RD.The localization and measurement of neuronal activity magnitude at high spatial and temporal resolution are essential for mapping and better understanding neuronal systems and mechanisms. One such example is the generation of retinotopic maps, which correlates localized retinal stimulation with the corresponding specific visual cortex responses. Here we evaluated and compared seven different methods for extracting and localizing cortical responses from voltage-sensitive dye imaging recordings, elicited by visual stimuli projected directly on the rat retina by a customized projection system. The performance of these methods was evaluated both qualitatively and quantitatively by means of two cluster separation metrics, namely, the (adjusted) Silhouette Index (SI) and the (adjusted) Davies-Bouldin Index (DBI). These metrics were validated using simulated data, which showed that Temporally Structured Component Analysis (TSCA) outperformed all other analysis methods for localizing cortical responses and generating high-resolution retinotopic maps. The analysis methods, as well as the use of cluster separation metrics proposed here, can facilitate future research aiming to localize specific activity at high resolution in the visual cortex or other brain areas.While spinal cord injuries (SCIs) result in a vast array of functional deficits, many of which are life threatening, the majority of SCIs are anatomically incomplete. Spared neural pathways contribute to functional and anatomical neuroplasticity that can occur spontaneously, or can be harnessed using rehabilitative, electrophysiological, or pharmacological strategies. With a focus on respiratory networks that are affected by cervical level SCI, the present review summarizes how non-invasive respiratory treatments can be used to harness this neuroplastic potential and enhance long-term recovery. Specific attention is given to "respiratory training" strategies currently used clinically (e.g., strength training) and those being developed through pre-clinical and early clinical testing [e.g., intermittent chemical stimulation via altering inhaled oxygen (hypoxia) or carbon dioxide stimulation]. Consideration is also given to the effect of training on non-respiratory (e.g., locomotor) networks. This review highlights advances in this area of pre-clinical and translational research, with insight into future directions for enhancing plasticity and improving functional outcomes after SCI.Alcohol and nicotine are the two most widely used and misused drugs around the world, and co-consumption of both substances is highly prevalent. Multiple lines of evidence show a profound effect of sex in many aspects of alcohol and nicotine reward, with women having more difficulty quitting smoking and showing a faster progression toward developing alcohol use disorder compared with men. Both alcohol and nicotine require neuronal nicotinic acetylcholine receptors (nAChRs) to elicit rewarding effects within the mesolimbic system, representing a shared molecular pathway that likely contributes to the frequent comorbidity of alcohol and nicotine dependence. However, the majority of preclinical studies on the mechanisms of alcohol and nicotine reward behaviors utilize only male rodents, and thus our understanding of alcohol and nicotine neuropharmacology relies heavily on male data. As preclinical research informs the development and refinement of therapies to help patients reduce drug consumption, it is critical to understand the way biological sex and sex hormones influence the rewarding properties of alcohol and nicotine. In this review, we summarize what is known about sex differences in rodent models of alcohol and nicotine reward behaviors with a focus on neuronal nAChRs, highlighting exciting areas for future research. Additionally, we discuss the way circulating sex hormones may interact with neuronal nAChRs to influence reward-related behavior.There are various sex differences in sleep/wake behaviors in mice. However, it is unclear whether there are sex differences in sleep homeostasis and arousal responses and whether gonadal hormones are involved in these sex differences. Here, we examined sleep/wake behaviors under baseline condition, after sleep deprivation by gentle handling, and arousal responses to repeated cage changes in male and female C57BL/6 mice that are hormonally intact, gonadectomized, or gonadectomized with hormone supplementation. Compared to males, females had longer wake time, shorter non-rapid eye movement sleep (NREMS) time, and longer rapid eye movement sleep (REMS) episodes. After sleep deprivation, males showed an increase in NREMS delta power, NREMS time, and REMS time, but females showed a smaller increase. Females and males showed similar arousal responses. Gonadectomy had only a modest effect on homeostatic sleep regulation in males but enhanced it in females. Gonadectomy weakened arousal response in males and females. With hormone replacement, baseline sleep in gonadectomized females was similar to that of intact females, and baseline sleep in gonadectomized males was close to that of intact males. Gonadal hormone supplementation restored arousal response in males but not in females. These results indicate that male and female mice differ in their baseline sleep-wake behavior, homeostatic sleep regulation, and arousal responses to external stimuli, which are differentially affected by reproductive hormones.Synaptic changes and neuronal network dysfunction are among the earliest changes in Alzheimer's disease (AD). Apolipoprotein E4 (ApoE4), the major genetic risk factor in AD, has been shown to be present at synapses and to induce hyperexcitability in mouse knock-in brain regions vulnerable to AD. ApoE in the brain is mainly generated by astrocytes, however, neurons can also produce ApoE under stress conditions such as aging. The potential synaptic function(s) of ApoE and whether the cellular source of ApoE might affect neuronal excitability remain poorly understood. Therefore, the aim of this study was to elucidate the synaptic localization and effects on neuronal activity of the two main human ApoE isoforms from different cellular sources in control and AD-like in vitro cultured neuron models. In this study ApoE is seen to localize at or near to synaptic terminals. Additionally, we detected a cellular source-specific effect of ApoE isoforms on neuronal activity measured by live cell Ca2+ imaging. Neuronal activity increases after acute but not long-term administration of ApoE4 astrocyte medium.