Hearing characteristics involving infantileonset Pompe disease after earlier enzymereplacement remedy
Preeclampsia has impacted 3-5% pregnancies among the world and its complications lead to both maternal and fetal morbidity and mortality. However, management of preeclampsia is limited. Nanoparticles targeting chondroitin sulfate A (CSA) can deliver drugs to placenta. Inactivation of soluble fms-like tyrosine kinase (sFlt-1) and nuclear factor-erythroid 2-like 2 (Nrf2) has been proved to alleviate preeclampsia and improve maternal and fetal outcomes. Carboxyl-polyethylene glycol-poly (d,l-lactide) (COOH-PEG5K-PLA8K), cationic lipid DOTAP, and siNrf2 and sisFlt-1 were used to construct the nanoparticles and conjugating peptides targeting CSA was fabricated to it. Trichostatin A inhibitor The expression levels of proteins and RNAs were estimated by qRT-PCR and Western blot assays. ELISA assays were performed to evaluate levels of circulating sFlt-1. The nanoparticles containing siNrf2 and sisFlt-1 are targeted to the placenta trophoblasts and downregulated the expression levels of Nrf2 and sFlt-1 as well as their downstream genes in the placental cells of model mice. Treatment of nanoparticles induced the expression of angiogenic factors in placenta. Knocking down Nrf2 and sFlt-1 synchronously alleviated the preeclampsia and increased the maternal and fetal outcomes in preeclampsia model mice. Nanoparticle-mediated simultaneous downregulation of placental Nrf2 and sFlt1 improved maternal and fetal outcomes in a preeclampsia mouse model.In this study, we prepared hydrogel scaffolds for tissue engineering by computer-assisted extrusion three-dimensional (3D) printing with photocured (λ = 445 nm) hyaluronic acid glycidyl methacrylate (HAGM). The developed product was compared with the polylactic-co-glycolic acid (PLGA) scaffolds generated by means of the original antisolvent 3D printing methodology. The cytotoxicity and cytocompatibility of the scaffolds were analyzed in vitro by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide tests, flow cytometry, and scanning electron microscopy. Anti-inflammatory and proangiogenic properties of the scaffolds were evaluated in the dorsal skinfold chamber mouse model by means of intravital fluorescence microscopy, histology, and immunohistochemistry throughout an observation period of 14 days. In vitro, none of the scaffolds revealed cytotoxicity on days 1, 2, and 5 after seeding with umbilical cord-derived multipotent stromal cells, and the primary cell adhesion to the surface of HAGM scaffolds was low. In vivo, implanted HAGM scaffolds showed enhanced vascularization and host tissue ingrowth, and the inflammatory response to them was less pronounced compared with PLGA scaffolds. The results indicate excellent biocompatibility and vascularization capacity of the developed 3D printed HAGM scaffolds and position them as strong candidates for advanced tissue engineering applications.Anterior cruciate ligament (ACL) reconstruction with allografts is limited by high immunogenicity, poor cellularization, and delayed tendon-bone healing. Decellularized tendons (DAs) have been used as bioscaffolds to reconstruct ligaments with variable success. In the study, four kinds of decellularized allogeneic hamstring tendons were prepared and their microstructure and cytocompatibility were examined in vitro. The results showed that decellularized allografts neutralized by 5% calcium bicarbonate had typical reticular and porous microstructures with optical cytocompatibility. Tissue-engineering decellularized allografts (TEDAs) were prepared with the selected decellularized allografts and tendon stem/progenitor cells and used for ACL reconstruction in a rabbit model. Histological staining showed that the TEDAs promoted cellular infiltration and new vessel formation significantly and improved tendon-bone healing moderately compared to decellularized allografts. Better macroscopic scores and biomechanical results were observed in TEDA groups, but there were no significant differences between DA and TEDA groups at months 1, 2, and 3 postoperatively. Immunohistochemical data showed that the tissue-engineering decellularized allografts enhanced the expression of collagen I at each timepoint and collagen III at months 1 and 2. ELISA analysis showed that the tissue-engineering decellularized allografts reduced the secretion of IgE and IL-1β within 1 month and promoted the secretion of IL-2, IL-4, IL-10, and IL-17 after 1 month. The results showed that tissue-engineering decellularized allografts strengthened intra-articular graft remodeling significantly and provided moderate improvements in tendon-bone healing by creating more suitable immune responses than decellularized allografts. The study revealed that tissue-engineering decellularized allografts as a promising option for ACL reconstruction could achieve more favorable outcomes.Electrospun nanofibers have received much attention as bone tissue-engineered scaffolds for their capacity to mimic the structure of natural extracellular matrix (ECM). Most studies have reproduced nanofibers with smooth surface for tissue engineering. This is quite different from the triple-helical nanotopography of natural collagen nanofibrils. In this study, hierarchical nanostructures were coated on the surface of drug-loaded core-shell nanofibers to mimic natural collagen nanofibrils. The nanoshish-kebab (SK) structure was decorated regularly on the surface of the nanofibers, and the inner-loaded bone morphogenetic protein 2 (BMP2) exhibited a gentle release pattern, similar to a zero-order release pattern in kinetics. The in vitro study also showed that the SK structure could accelerate cell proliferation, attachment, and osteogenic differentiation. Four groups of scaffolds were implanted in vivo to repair critical-sized rat calvarial defects (1) PCL/PVA (control); (2) SK-PCL/PVA; (3) PCL/PVA-BMP2; and (4) SK-PCL/PVA-BMP2. Much more bone was formed in the SK-PCL/PVA group (24.57 ± 3.81%) than in the control group (1.21 ± 0.23%). The BMP2-loaded core-shell nanofibers with nanopatterned structure (SK-PCL/PVA-BMP2) displayed the best repair efficacy (76.38 ± 4.13%), followed by the PCL/PVA-BMP2 group (39.86 ± 5.74%). It was believed that the hierarchical nanostructured core-shell nanofibers could promote osteogeneration and that the SK structure showed synergistic ability with nanofiber-loaded BMP2 in vivo for bone regeneration. Thus, this BMP2-loaded core-shell nanofiber scaffold with hierarchical nanostructure holds great potential for bone tissue engineering applications.