Supportive SelfAssembled Permanent magnet Micropaddles in Liquefied Materials

From Selfless
Revision as of 10:12, 24 October 2024 by Swingroot9 (talk | contribs) (Created page with "The TBBPA mass balance showed that approximately 86.8 ± 0.05% and 97 ± 0.01% of the removed TBBPA was biodegraded in the AR and MR, respectively. Furthermore, TBBPA biodegra...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

The TBBPA mass balance showed that approximately 86.8 ± 0.05% and 97 ± 0.01% of the removed TBBPA was biodegraded in the AR and MR, respectively. Furthermore, TBBPA biodegradation went further than reductive debromination as total phenols were detected in the reactors' effluent.Alarming water contamination rates by toxic herbicides have drawn attention to treat these pollutants using efficient, easy, and economic techniques. In this work, date-palm coir (DPC) waste-based nano-activated carbon (DPC-AC) was successfully prepared and examined for adsorptive removal of toxic 2,4-dichlorophenoxyacetic acid (2,4-DPA) herbicide from synthetic wastewater. The DPC-AC was synthesized via a single-step carbonization-KOH activation approach. The nanosorbent displayed a flaky morphology with graphitic structure and oxygen-rich surface functionalities. The nanocarbon with a mean particle size of 163 nm possessed a high specific surface area of 947 m2/g with an average pore size of 2.28 nm. High 2,4-DPA removal efficiency of 98.6% was obtained for the optimal adsorption conditions of pH 2, dosage 0.15 g, rotational speed 100 rpm, time 90 min, and initial 2,4-DPA concentration of 100 mg/L. Langmuir isotherm best described the equilibrium behavior with a theoretical maximum of 50.25 mg/g adsorption capacity for the system. Pseudo-second order model was more appropriate in quantifying the kinetics for all initial feed concentrations. Thermodynamically, the adsorption process was spontaneous, endothermic, and involved low activation energy. A plausible mechanism for the adsorption-desorption of 2,4-DPA onto DPC-AC is also discussed. Cost analysis and regenerability studies proved the economic value ($3/kg) and reusable nature of DPC-AC without any significant loss in its performance. Overall, this study highlights the advantages of DPC waste valorization into efficient nanoadsorbent and the sequestration of noxious 2,4-DPA herbicide from its aqueous streams using this nanosorbent.To achieve high-efficiency nutrient removal in constructed wetlands (CWs), a novel simultaneous nitrogen and phosphorus removal (SNPR) process was developed by combining nitrification, endogenous denitrification, and denitrifying phosphorus removal. In SNPR process, denitrifying glycogen-accumulating organisms (DGAOs) and denitrifying polyphosphate-accumulating organisms (DPAOs) utilized NOx--N(NO3--N or NO2--N) as electron acceptor and poly-beta-hydroxy-alkanoates (PHAs) as carbon sources for endogenous denitrification and denitrifying phosphorus removal processes. Results from 217 days of operation showed that a high-level of nitrogen removal efficiency of 83.73% was achieved with influent COD/N of 4. The success was attributed to the fact that most of influent carbon sources could be transformed into PHAs before nitrification via enriching DGAOs and DPAOs in CW, which simultaneously improved nitrification and denitrification due to reducing oxygen and carbon sources consumption by aerobic heterotrophs. Phosphorus was mainly removed via denitrifying phosphorus removal, and PO43--P removal efficiency reached up to 87.84% with even common gravel used as substrate. Stoichiometry analysis revealed that DGAOs were the main organisms providing nitrite to DPAOs, suggesting that the effective PO43--P removal under high DGAO abundance condition might be attributed to the coordination of DGAOs and DPAOs in SNRP processes.This study examined the impact of worldwide governance indicators on the sustainability of the bioenergy industry in selected European countries for the period 1996-2018. Applying the Fixed Effect (FE) Model, the results reveal that the bioenergy industry can significantly grow by improving the quality of worldwide governance indicators in European countries, especially in Western European Countries (WEC). Government effectiveness, rule of law, regulatory quality, and voice and accountability are found to be increasing the growth of the bioenergy industry. Precisely, the results further show that the magnitude of the effect of government effectiveness, voice and accountability, and Gross Domestic Product (GDP) on bioenergy output is higher in Western European Countries (WEC) as compared to the Central and Eastern European Countries (CEEC). Also, the findings further elaborate that the significant positive impact of regulatory quality and rule of law on bioenergy output is higher in CEEC countries compared to the WEC countries. The finding implies that the growth of the bioenergy industry in European countries can be effectively increased by improving the practice and quality of worldwide governance indicators. The study recommends for European countries to increase the efficiency of worldwide governance in their bioenergy industry to increase the sustainability of bioenergy production and reduce Dioxide Carbon (CO2) emissions. Policymakers in these countries should also invest more in worldwide governance to increase its effectiveness and transparency in the bioenergy industry. The authorities should equally emphasize the effectiveness and transparency of worldwide governance indicators to attain bioenergy security and lessen the dependence on fossil fuels.In this study, single and joint inhibitory effects of nitrophenols on activated sludge and variations on the content of extracellular polymeric substances (EPS) were investigated. Results indicate that the nitrophenols adversely affected the organic and NH3-N removal of activated sludge and the adverse effect of nitrophenols on autotrophic bacteria was higher than that on heterotrophic bacteria. AEBSF cost Further, 2,4-dinitrophenol (2,4-DNP) demonstrated the highest inhibitory effect, followed by 4-nitrophenol (4-NP) and 2-nitrophenol (2-NP), and the combined effects of binary and ternary nitrophenols induced additive toxicity. At various concentrations and toxicant ratios, 2,4-DNP, as the dominant toxic nitrophenol, was the major contributor to the joint inhibition effects of the mixed nitrophenols. At lower concentrations of 2-NP (below 100 mg/L), 4-NP (below 50 mg/L), and 2,4-DNP (below 10 mg/L), large amounts of both tightly bound EPS (TB-EPS) and loosely bound EPS (LB-EPS) were secreted for the normal physiological activities of the microbiological cells.