Mapping as well as Checking ZeroDeforestation Promises

From Selfless
Revision as of 11:42, 27 October 2024 by Hailbird67 (talk | contribs) (Created page with "Finally, the rationality and effectiveness of our method are verified by an example and its sensitivity analysis. The result shows that our method makes the solution of MADM p...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Finally, the rationality and effectiveness of our method are verified by an example and its sensitivity analysis. The result shows that our method makes the solution of MADM problems more objective and reasonable.Vector-borne diseases that occur in humans, as well as in domestic and wild reservoir hosts, cause a significant concern in public health, veterinary health, and ecological health in bio-diverse environments. The majority of vector-borne zoonotic diseases are transmitted among diverse host species, but different hosts have their own ability to transmit pathogens and to attract vectors. These combined transmission mechanisms in hosts and vectors are often called "host competencies" and "vector-feeding preferences." The purpose of this research is to assess the relationship between the host's ability to transmit the pathogen to vectors and the different feeding preferences for a specific host using a multi-host mathematical model. Working with zoonotic cutaneous leishmaniasis and Chagas disease, numerical simulations illustrate these vector-host populations' behavior together for the first time. Global sensitivity analyses confirm that the basic reproductive number, R0, is more sensitive to the the vector-demographic and biting-rate parameters in both diseases. Therefore, in this era of remarkable biodiversity loss and increased vector-borne diseases, it is crucial to understand how vector-host interaction mechanisms affect disease dynamics in humans within wildlife and domestic settings.This study proposes a multi-objective mixed integer linear programming (MOMILP) model for assigning a set of flights to different runways and determining their actual arrival and departure times. The proposed model envisages unique operation model of each runway (i.e., takeoff, landing, or mixed takeoff and landing). Further, interference in two flights between adjacent runways are also fully considered in this model. The work aims at reveal the optimal relationship between traffic stream characteristics, operation mode of each runway and flight scheduling to simultaneously minimizing flight delays and maximizing runway utilization. Since the problem of interest has a non-deterministic polynomial (NP-hard) complexity, a heuristic-based non-dominated sorting genetic algorithm (NSGA-II) is also presented to find Pareto-optimal solutions in a reasonable amount of time, where coding structure and heuristic algorithm for producing initial population are defined. Finally, a real-world example is provided to compare the difference in quality between the proposed and traditional models, and reveal changes in trends between delay time of flights and idle time of the runways, which can verify the correctness of the model.We propose a SIR system that includes a Poisson measure term to model the quarantine of infected individuals. An inequality concerning the term representing the transmission rate is given to establish the stochastic stability of the disease free equilibrium. It is further shown that if R0 > 1 then the long-run behavior the system will reside within a neighborhood of the equilibrium in the underlying deterministic version of this system.This paper deals with a mathematical analysis of two-steps model of anaerobic digestion process, including dynamics of soluble microbial products (SMP). We propose to investigate effects of the new variable SMP on qualitative properties of the process in different generic cases. Equilibria of the model are graphically established considering qualitative properties of the kinetics and, their stability are proved theoretically and/or verified by numerical simulations. It will shown that the model has a rich qualitative behavior as equilibria bifurcation and multi-stability according to the considered bifurcation parameter.This manuscript presents a comparison of noise properties exhibited by two stochastic binary models for (i) a self-repressing gene; (ii) a repressed or activated externally regulating one. The stochastic models describe the dynamics of probability distributions governing two random variables, namely, protein numbers and the gene state as ON or OFF. In a previous work, we quantify noise in protein numbers by means of its Fano factor and write this quantity as a function of the covariance between the two random variables. Then we show that distributions governing the number of gene products can be super-Fano, Fano or sub-Fano if the covariance is, respectively, positive, null or negative. The latter condition is exclusive for the self-repressing gene and our analysis shows the conditions for which the Fano factor is a sufficient classifier of fluctuations in gene expression. In this work, we present the conditions for which the noise on the number of gene products generated from a self-repressing gene or an externally regulating one are quantitatively similar. That is important for inference of gene regulation from noise in gene expression quantitative data. Our results contribute to a classification of noise function in biological systems by theoretically demonstrating the mechanisms underpinning the higher precision in expression of a self-repressing gene in comparison with an externally regulated one.We formulate a mathematical model to explore the transmission dynamics of human papillomavirus (HPV). In our model, infected individuals can recover with a limited immunity that results in a lower probability of being infected again. In practice, it is necessary to revaccinate individuals within a period after the first vaccination to ensure immunity to HPV infection. Accordingly, we include vaccination and revaccination in our model. The model exhibits backward bifurcation as a result of imperfect protection after recovery and because the basic reproduction number is less than one. We conduct sensitivity analysis to identify the factors that markedly affect HPV infection rates and propose an optimal control problem that minimizes vaccination and screening cost. https://www.selleckchem.com/ The optimal controls are characterized according to Pontryagin's maximum principle and numerically solved by the symplectic pseudospectral method.