Delayed Miocene megalake regressions in Eurasia

From Selfless
Revision as of 09:24, 28 October 2024 by Juteronald7 (talk | contribs) (Created page with "ctive option for tolerable children.Cellular microenvironments provide stimuli including paracrine and autocrine growth factors and physico-chemical cues, which support effici...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

ctive option for tolerable children.Cellular microenvironments provide stimuli including paracrine and autocrine growth factors and physico-chemical cues, which support efficient in vivo cell production unmatched by current in vitro biomanufacturing platforms. While three-dimensional (3D) culture systems aim to recapitulate niche architecture and function of the target tissue/organ, they are limited in accessing spatiotemporal information to evaluate and optimize in situ cell/tissue process development. Herein, a mathematical modelling framework is parameterized by single-cell phenotypic imaging and multiplexed biochemical assays to simulate the non-uniform tissue distribution of nutrients/metabolites and growth factors in cell niche environments. This model is applied to a bone marrow mimicry 3D perfusion bioreactor containing dense stromal and hematopoietic tissue with limited red blood cell (RBC) egress. The model characterized an imbalance between endogenous cytokine production and nutrient starvation within the microenvironmental niches, and recommended increased cell inoculum density and enhanced medium exchange, guiding the development of a miniaturized prototype bioreactor. The second-generation prototype improved the distribution of nutrients and growth factors and supported a 50-fold increase in RBC production efficiency. This image-informed bioprocess modelling framework leverages spatiotemporal niche information to enhance biochemical factor utilization and improve cell manufacturing in 3D systems.Among the most specialized integumentary outgrowths in amniotes are the adhesive, scale-like scansors and lamellae on the digits of anoles and geckos. Less well-known are adhesive tail pads exhibited by 21 gecko genera. While described over 120 years ago, no studies have quantified their possible adhesive function or described their embryonic development. Here, we characterize adult and embryonic morphology and adhesive performance of crested gecko (Correlophus ciliatus) tail pads. Additionally, we use embryonic data to test whether tail pads are serial homologues to toe pads. External morphology and histology of C. ciliatus tail pads are largely similar to tail pads of closely related geckos. Functionally, C. ciliatus tail pads exhibit impressive adhesive ability, hypothetically capable of holding up to five times their own mass. Tail pads develop at approximately the same time during embryogenesis as toe pads. Further, tail pads exhibit similar developmental patterns to toe pads, which are markedly different from non-adhesive gecko toes and tails. Our data provide support for the serial homology of adhesive tail pads with toe pads.Alternative pathways of energy transfer guarantee the functionality and productivity in marine food webs that experience strong seasonality. Nevertheless, the complexity of zooplankton interactions is rarely considered in trophic studies because of the lack of detailed information about feeding interactions in nature. In this study, we used DNA metabarcoding to highlight the diversity of trophic niches in a wide range of micro- and mesozooplankton, including ciliates, rotifers, cladocerans, copepods and their prey, by sequencing 16- and 18S rRNA genes. Our study demonstrates that the zooplankton trophic niche partitioning goes beyond both phylogeny and size and reinforces the importance of diversity in resource use for stabilizing food web efficiency by allowing for several different pathways of energy transfer. We further highlight that small, rarely studied zooplankton (rotifers and ciliates) fill an important role in the Baltic Sea pelagic primary production pathways and the potential of ciliates, rotifers and crustaceans in the utilization of filamentous and picocyanobacteria within the pelagic food web. The approach used in this study is a suitable entry point to ecosystem-wide food web modelling considering species-specific resource use of key consumers.The deep-seafloor in the tropical Indo-Pacific harbours a rich and diverse benthic fauna with numerous palaeoendemics. Here, we describe a new species, genus and family of brittle-star (Ophiuroidea) from a single eight-armed specimen collected from a depth between 360 and 560 m on Banc Durand, a seamount east of New Caledonia. FI-6934 agonist Leveraging a robust, fossil-calibrated (265 kbp DNA) phylogeny for the Ophiuroidea, we estimate the new lineage diverged from other ophiacanthid families in the Late Triassic or Jurassic (median = 187-178 Myr, 95% CI = 215-143 Myr), a period of elevated diversification for this group. We further report very similar microfossil remains from Early Jurassic (180 Myr) sediments of Normandy, France. The discovery of a new ancient lineage in the relatively well-known Ophiuroidea indicates the importance of ongoing taxonomic research in the deep-sea, an environment increasingly threatened by human activities.Microbes form the base of food webs and drive biogeochemical cycling. Predicting the effects of microbial evolution on global elemental cycles remains a significant challenge due to the sheer number of interacting environmental and trait combinations. Here, we present an approach for integrating multivariate trait data into a predictive model of trait evolution. We investigated the outcome of thousands of possible adaptive walks parameterized using empirical evolution data from the alga Chlamydomonas exposed to high CO2. We found that the direction of historical bias (existing trait correlations) influenced both the rate of adaptation and the evolved phenotypes (trait combinations). Critically, we use fitness landscapes derived directly from empirical trait values to capture known evolutionary phenomena. This work demonstrates that ecological models need to represent both changes in traits and changes in the correlation between traits in order to accurately capture phytoplankton evolution and predict future shifts in elemental cycling.Amphibious fishes transition between aquatic and terrestrial habitats, and must therefore learn to navigate two dramatically different environments. We used the amphibious killifish Kryptolebias marmoratus to test the hypothesis that the spatial learning ability of amphibious fishes would be altered by exposure to terrestrial environments because of neural plasticity in the brain region linked to spatial cognition (dorsolateral pallium). We subjected fish to eight weeks of fluctuating air-water conditions or terrestrial exercise before assessing spatial learning using a bifurcating T-maze, and neurogenesis in the dorsolateral pallium by immunostaining for proliferating cell nuclear antigen. In support of our hypothesis, we found that air-water fluctuations and terrestrial exercise improved some markers of spatial learning. Moreover, air-water and exercised fish had 39% and 46% more proliferating cells in their dorsolateral pallium relative to control fish, respectively. Overall, our findings suggest that fish with more terrestrial tendencies may have a cognitive advantage over those that remain in water, which ultimately may influence their fitness in both aquatic and terrestrial settings.