Recognition involving molecular glues of the SLP761433 proteinprotein interaction
Rare-earth (RE)-based frustrated magnets, such as typical systems of combining strong spin-orbit coupling (SOC), geometric frustration, and anisotropic exchange interaction, can give rise to diverse exotic magnetic ground states such as quantum spin liquid. The discovery of new RE-based frustrated materials is crucial for exploring the exotic magnetic phases. Herein, we report the synthesis, structure, and magnetic properties of a family of melilite-type RE2Be2GeO7 (RE = Pr, Nd, and Gd-Yb) compounds crystallized in a tetragonal P4̅21m structure, where magnetic RE3+ ions lay out on the Shastry-Sutherland lattice (SSL) within the ab plane and are well separated by nonmagnetic [GeBe2O7]6- polyhedrons along the c-axis. Temperature (T)-dependent susceptibilities χ(T) and isothermal magnetization M(H) measurements reveal that most RE2Be2GeO7 compounds except RE = Tb show no magnetic ordering down to 2 K despite the dominant antiferromagnetic (AFM) interactions, where Tb2Be2GeO7 undergoes AFM transition with Néel temperature TN ∼ 2.5 K and field-induced spin flop behaviors (T less then TN). In addition, the calculated magnetic entropy change ΔSm from the isothermal M(H) curves reveals viable magnetocaloric effect for RE2Be2GeO7 (RE = Gd and Dy) in liquid helium temperature regimes; Gd2Be2GeO7 shows the maximum ΔSm up to 54.8 J K-1 kg-1 at ΔH = 7 T and Dy2Be2GeO7 has the largest value ΔSm = 16.1 J K-1 kg-1 at ΔH = 2 T in this family. More excitingly, the rich diversity of RE ions in this family enables an archetype for exploring exotic quantum magnetic phenomena with large variability of spin located on the SSL lattice.A major bottleneck of large-scale water splitting for hydrogen production is the lack of catalysts for the oxygen evolution reaction (OER) with low cost and high efficiency. In this work, we proposed an electrocatalyst of a curved carbon nanocone embedded with two TMN4 active sites (TM = transition metal) and used first-principles calculations to investigate their OER mechanisms and catalytic activities. selleck inhibitor In the particular spatial confinement of a curved nanocone, we found that the distance between intermediates adsorbed on two active sites is shorter than the distance between these two active sites. This finding can be used to enhance OER activity by distance-dependent interaction between intermediates through two different mechanisms. The first mechanism in which an O2 molecule is generated from two neighboring *O intermediates exhibits a linear activity trend, and the lowest overpotential is 0.27 V for the FeN4 system. In the second mechanism, selective stabilization of the *OOH intermediate is realized, leading to a new scaling relationship (ΔG*OOH = ΔG*OH + 3.04 eV) associated with a modified OER activity volcano (theoretical volcano apex at 0.29 V). The studied mechanisms of the spatial confinement of a carbon nanocone provide a new perspective for designing efficient OER catalysts.We introduce the efficient Fmoc-SPPS and peptoid synthesis of Q-proline-based, metal-binding macrocycles (QPMs), which bind metal cations and display nine functional groups. Metal-free QPMs are disordered, evidenced by NMR and a crystal structure of QPM-3 obtained through racemic crystallization. Upon addition of metal cations, QPMs adopt ordered structures. Notably, the addition of a second functional group at the hydantoin amide position (R2) converts the proline ring from Cγ-endo to Cγ-exo, due to steric interactions.Next-generation colloidal semiconductor nanocrystals featuring enhanced optoelectronic properties and processability are expected to arise from complete mastering of the nanocrystals' surface characteristics, attained by a rational engineering of the passivating ligands. This aspect is highly challenging, as it underlies a detailed understanding of the critical chemical processes that occur at the nanocrystal-ligand-solvent interface, a task that is prohibitive because of the limited number of nanocrystal syntheses that could be tried in the lab, where only a few dozen of the commercially available starting ligands can actually be explored. However, this challenging goal can be addressed nowadays by combining experiments with atomistic calculations and machine learning algorithms. In the last decades we indeed witnessed major advances in the development and application of computational software dedicated to the solution of the electronic structure problem as well as the expansion of tools to improve the sampl machine learning.To fully capture the power of these computational tools in the chemistry of colloidal nanocrystals, we decided to embed the thermodynamics behind the dissolution/precipitation of nanocrystal-ligand complexes in organic solvents and the crucial process of binding/detachment of ligands at the nanocrystal surface into a unique chemical framework. We show that formalizing this mechanism with a computational bird's eye view helps in deducing the critical factors that govern the stabilization of colloidal dispersions of nanocrystals in an organic solvent as well as the definition of those key parameters that need to be calculated to manipulate surface ligands. This approach has the ultimate goal of engineering surface ligands in silico, anticipating and driving the experiments in the lab.It was previously shown that human platelet 12S-lipoxygenase (h12-LOX) exists as a dimer; however, the specific structure is unknown. In this study, we create a model of the dimer through a combination of computational methods, experimental mutagenesis, and hydrogen-deuterium exchange (HDX) investigations. Initially, Leu183 and Leu187 were replaced by negatively charged glutamate residues and neighboring aromatic residues were replaced with alanine residues (F174A/W176A/L183E/L187E/Y191A). This quintuple mutant disrupted both the hydrophobic and π-π interactions, generating an h12-LOX monomer. To refine the determinants for dimer formation further, the L183E/L187E mutant was generated and the equilibrium shifted mostly toward the monomer. We then submitted the predicted monomeric structure to protein-protein docking to create a model of the dimeric complex. A total of nine of the top 10 most energetically favorable docking conformations predict a TOP-to-TOP dimeric arrangement of h12-LOX, with the α-helices containing a Leu-rich region (L172, L183, L187, and L194), corroborating our experimental results showing the importance of these hydrophobic interactions for dimerization.