Effects of troponoids on mitochondrial function as well as cytotoxicity
Nitrogen and sulfur codoped carbon dots (NSCDs) were synthesized via a one-pot hydrothermal method, and citric acid, ethylenediamine, and methyl blue were used as precursors. The obtained NSCDs were spherical with an average size of 1.86 nm. selleck chemical The fluorescence emission spectra of the NSCDs were excitation independent and emitted blue fluorescence at 440 nm with an excitation wavelength at 350 nm. The quantum yield of the NSCDs was calculated to be 68.0%. The NSCDs could be constructed as fluorescent probes for highly selective and sensitive sensing mercuric (Hg2+) and hypochlorite (ClO-) ions. As the addition of Hg2+ or ClO- ions to the NSCDs, the fluorescence intensity was effectively quenched due to dynamic quenching. Under the optimal conditions, the linear response of the fluorescence intensity ranged from 0.7 μM to 15 μM with a detection limit of 0.54 μM and from 0.3 μM to 5.0 μM with a limit of detection of 0.29 μM for Hg2+ and ClO- ions, respectively. Finally, the proposed method was successfully used for quantifying Hg2+ and ClO- ions in spiked tap water samples.In this study, highly porous carbon fiber was prepared for hydrogen storage. Porous carbon fiber (PCF) and activated porous carbon fiber (APCF) were derived by carbonization and chemical activation after selectively removing polyvinyl alcohol from a bi-component fiber composed of polyvinyl alcohol and polyacrylonitrile (PAN). The chemical activation created more pores on the surface of the PCF, and consequently, highly porous APCF was obtained with an improved BET surface area (3058 m2 g-1) and micropore volume (1.18 cm3 g-1) compare to those of the carbon fiber, which was prepared by calcination of monocomponent PAN. APCF was revealed to be very efficient for hydrogen storage, its hydrogen capacity of 5.14 wt% at 77 K and 10 MPa. Such hydrogen storage capacity is much higher than that of activated carbon fibers reported previously. To further enhance hydrogen storage capacity, catalytic Pd nanoparticles were deposited on the surface of the APCF. The Pd-deposited APCF exhibits a high hydrogen storage capacity of 5.45 wt% at 77 K and 10 MPa. The results demonstrate the potential of Pd-deposited APCF for efficient hydrogen storage.The cost-effective conversion of low-grade heat into electricity using thermoelectric devices requires developing alternative materials and material processing technologies able to reduce the currently high device manufacturing costs. In this direction, thermoelectric materials that do not rely on rare or toxic elements such as tellurium or lead need to be produced using high-throughput technologies not involving high temperatures and long processes. Bi2Se3 is an obvious possible Te-free alternative to Bi2Te3 for ambient temperature thermoelectric applications, but its performance is still low for practical applications, and additional efforts toward finding proper dopants are required. Here, we report a scalable method to produce Bi2Se3 nanosheets at low synthesis temperatures. We studied the influence of different dopants on the thermoelectric properties of this material. Among the elements tested, we demonstrated that Sn doping resulted in the best performance. Sn incorporation resulted in a significant improvement to the Bi2Se3 Seebeck coefficient and a reduction in the thermal conductivity in the direction of the hot-press axis, resulting in an overall 60% improvement in the thermoelectric figure of merit of Bi2Se3.The fabrication of conformal nanostructures on microarchitectures is of great significance for diverse applications. Here a facile and universal method was developed for conformal self-assembly of nanospheres on various substrates including convex bumps and concave holes. Hydrophobic microarchitectures could be transferred into superhydrophilic ones using plasma treatment due to the formation of numerous hydroxyl groups. Because of superhydrophilicity, the nanosphere suspension spread on the microarchitectures quickly and conformal self-assembly of nanospheres can be realized. Besides, the feature size of the conformal nanospheres on the substrates could be further regulated by plasma treatment. After transferring two-dimensional tungsten disulfide sheets onto the conformal nanospheres, the periodic nanosphere array was demonstrated to be able to enhance the light harvesting of WS2. Based on this, a light-enhanced room-temperature gas sensor with a fast recovery speed ( less then 35 s) and low detecting limit (500 ppb) was achieved. Moreover, the WS2-covered nanospheres on the microarchitectures were very sensitive to the changes in air pressure due to the formation of suspended sheets on the convex bumps and concave holes. A sensitive photoelectronic pressure sensor that was capable of detecting the airtightness of vacuum devices was developed using the WS2-decorated hierarchical architectures. This work provides a simple method for the fabrication of conformal nanospheres on arbitrary substrates, which is promising for three-dimensional microfabrication of multifunctional hierarchical microarchitectures for diverse applications, such as biomimetic compound eyes, smart wetting surfaces and photonic crystals.The ideal retrograde filling material that is easy to handle, has good physicochemical properties, and is biocompatible has not yet been developed. The current study reports the development of a novel bioactive glass based powder for use as a retrograde filling material that is capable of altering the consistency and hardening rate of mixtures when mixed with existing bioactive glass based cement. Furthermore, its physicochemical properties, in vitro effects on human cementoblast-like cells, and in vivo effects on inflammatory responses were evaluated. The surface of the hardened cement showed the formation of hydroxyapatite-like precipitates and calcium and silicate ions were eluted from the cement when the pH level was stabilized at 10.5. Additionally, the cement was found to be insoluble and exhibited favorable handling properties. No adverse effects on viability, proliferation, and expression of differentiated markers were observed in the in vitro experiment, and the cement was capable of inducing calcium deposition in the cells. Moreover, the cement demonstrated a lower number of infiltrated inflammatory cells compared to the other materials used in the in vivo mouse subcutaneous implantation experiment. These findings suggest that the retrograde filling material composed of bioactive glass and the novel bioactive glass based powder exhibits favorable physicochemical properties, cytocompatibility, and biocompatibility.We report on an optimized, scalable solution-phase synthetic procedure for the fabrication of fine-tuned monodisperse nanostructures (Pt(NiCo), PtNi and PtCo). The influence of different solute metal precursors and surfactants on the morphological evolution of homogeneous alloy nanoparticles (NPs) has been investigated. Molybdenum hexacarbonyl (Mo(CO)6) was used as the reductant. We demonstrate that this solution-based strategy results in uniform-sized NPs, the morphology of which can be manipulated by appropriate selection of surfactants and solute metal precursors. Co-surfactants (oleylamine, OAm, and hexadecylamine, HDA) enabled the development of a variety of high-index faceted NP morphologies with varying degrees of curvatures while pure OAm selectively produced octahedral NP morphologies. This Mo(CO)6-based synthetic protocol offers new avenues for the fabrication of multi-structured alloy NPs as high-performance electrocatalysts.A plasmonic near-infrared multiple-channel filter is numerically and experimentally investigated based on a gold periodic composite nanocavities metasurface. By the interference among different excited plasmonic modes on the metasurface, the multipeak extraordinary optical transmission (EOT) phenomenon is induced and utilized to realize multiple-channel filtering. Investigated from the simulated transmission spectrum of the metasurface, the positions and intensity of transmission peaks are tuned by the geometrical parameters of the metasurface and environmental refractive index. The fabricated metasurface approached transmission peaks at 1128 nm, 1245 nm, and 1362 nm, functioning as a three-passbands filter. With advantages of brief single-layer fabrication and multi-frequency selectivity, the proposed plasmonic filter has potential possibilities of integration in nano-photonic switching, detecting and biological sensing systems.CsPbI3 inorganic perovskite is synthesized by a solvent-free, solid-state reaction, and its structural and optical properties can be deeply investigated using a multi-technique approach. X-ray Diffraction (XRD) and Raman measurements, optical absorption, steady-time and time-resolved luminescence, as well as High-Resolution Transmission Electron Microscopy (HRTEM) imaging, were exploited to understand phase evolution as a function of synthesis time length. Nanoparticles with multiple, well-defined crystalline domains of different crystalline phases were observed, usually surrounded by a thin, amorphous/out-of-axis shell. By increasing the synthesis time length, in addition to the pure α phase, which was rapidly converted into the δ phase at room temperature, a secondary phase, Cs4PbI6, was observed, together with the 715 nm-emitting γ phase.In recent years, electrospun nanofibers have attracted extensive attention due to their large specific surface area, high porosity, and controllable shape. Among the many applications of electrospinning, electrospun nanofibers used in fields such as tissue engineering, food packaging, and air purification often require some antibacterial properties. This paper expounds the development potential of electrospinning in the antibacterial field from four aspects fiber morphology, antibacterial materials, antibacterial mechanism, and application fields. The effects of fiber morphology and antibacterial materials on the antibacterial activity and characteristics are first presented, then followed by a discussion of the antibacterial mechanisms and influencing factors of these materials. Typical application examples of antibacterial nanofibers are presented, which show the good prospects of electrospinning in the antibacterial field.In this work, zinc oxide particles (ZnO NPs) green synthesis with the application of black tea extract (BT) is presented. A thorough investigation of the properties of the extract and the obtained materials was conducted by using Fourier transform infrared spectroscopy (FTIR), liquid chromatography-mass spectrometry (LC-MS), X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and quadrupole mass spectroscopy (QMS). The obtained results indicated that the amount of used BT strongly influenced the morphology, chemical, and crystalline structure of the obtained particles. The investigation demonstrated that the substance present in black tea (BT) extract, which was adsorbed on the ZnO surface, was in fact gallic acid. It was found that gallic acid controls the crystallization process of ZnO by temporarily blocking the zinc cations. Additionally, these organic molecules interact with the hydroxide group of the precipitant. This blocks the dehydration process stabilizing the zinc hydroxide forms and hinders its transformation into zinc oxide.