Fresh crossregulation relationships in between dlx genes inside larval zebrafish
Petrochemical industrial effluent contains industrial wastewater from various manufacturing processes. The mixed treatment of these different petrochemical wastewater effluents may influence the organic removal performance of the anaerobic processes. In this study, three typical petrochemical effluents, including polyester (PE), polyethylene terephthalate, and purified terephthalic acid wastewater, were collected. The effect of the mixed petrochemical wastewater on the organic removal and microbial community structure was investigated in the anaerobic batch assays via spectroscopy and high-throughput sequencing. The organic removal efficiencies were similar (71-85%) in all the batch assays for 90 h acclimation. The mixture of wastewater, especially the addition of PE wastewater, significantly prolonged organic removal process. It was related to the aromatic removal performance and microbial community structure during the mixed wastewater treatment. The microbial community structure in the mixed wastewater batch assay showed high similarity with that in the PE wastewater batch assay. Ignavibacterium, Syntrophus, and Pelotomaculum were crucial to the degradation of aromatic compounds together with Methanosaeta. The mixture of wastewater, especially the addition of PE wastewater, caused the decay of these functional microbes and resulted in the inefficient removal of the aromatic compounds.Water pollution is exacerbated due to irrational human activities in China. Restoring and rebuilding river basin ecosystems are major ecological strategies at present. Controlling the non-point source pollution (NPSP) by reasonable management of land use in the basin and phytoremediation of contaminated waters is the optimum approach. Thus, it is significant to study on the relationship that between landscape change and the aquatic environment, as well as further to analyze on the combined effect of the landscape and water quality. This paper describes the application and development of the "source-sink" landscape theory in China, and the role of the theory in controlling NPSP. From this perspective, a landscape capable of generating NPSP would be a "source" landscape, such as farmland, while another capable of preventing NPSP would be a "sink" landscape, such as forests and wetland. Applying the source-sink landscape theory, it is possible to exert the ecological benefits of the landscape while playing the esthetic value of the landscape. Also, the purification mechanism of plants in contaminated water is discussed. Besides, it is vital that research on water body restoration should focus not only on single discipline but also on integration and coordination between various ones such as ecology, environmental science, and geography to jointly push up researches related to water body phytoremediation. Hopefully, this paper could help to control water pollution from a new perspective, also to improve water environment and benefit human lives.To high efficiently remove H2S from low partial pressure coke oven gas (COG), a novel activator (tetramethylammonium arginine, [N1111][Arg]) was used to blend with N-methyldiethanolamine (MDEA) for the absorption of H2S. High concentrated [N1111][Arg]-MDEA aqueous solution was used as absorbent. Thermodynamic properties including absorption amount and H2S loading values were measured, then the kinetic apparent absorption rate was calculated based on the change of absorption amount with time. The removal efficiency of H2S in simulated COG was verified in tray towers. Compared with monoethanolamine (MEA)-MDEA and tetramethylammonium glycinate ([N1111][Gly])-MDEA aqueous solutions, [N1111][Arg]-MDEA aqueous solution takes advantages of higher absorption capacity, absorption rate and removal efficiency. Our results showed that the proposed absorbent has good industrial application prospect in coke oven gas desulfurization, because it achieved 100% removal of H2S in the tray tower containing only 4 sieve plates under high concentrated condition (water content less then 45%), which may significantly decrease the energy consumption.The phytomanagement concept combines a sustainable reduction of pollutant linkages at risk-assessed contaminated sites with the generation of both valuable biomass for the (bio)economy and ecosystem services. One of the potential benefits of phytomanagement is the possibility to increase biodiversity in polluted sites. However, the unique biodiversity present in some polluted sites can be severely impacted by the implementation of phytomanagement practices, even resulting in the local extinction of endemic ecotypes or species of great conservation value. Here, we highlight the importance of promoting measures to minimise the potential adverse impact of phytomanagement on biodiversity at polluted sites, as well as recommend practices to increase biodiversity at phytomanaged sites without compromising its effectiveness in terms of reduction of pollutant linkages and the generation of valuable biomass and ecosystem services.Introduction of exotic predators or runoff of fertilizers can alter aquatic food webs, in particular zooplankton communities, through top-down and bottom-up effects. In a mesocosm experiment, we manipulated the density of Western Mosquitofish (Gambusia affinis) and nutrient levels (nitrate and phosphate independently) and observed effects on zooplankton and phytoplankton in a fall, temperate zone system. If top-down regulation were important, we expected mosquitofish predation to reduce zooplankton abundance, which would indirectly benefit phytoplankton. LY2228820 supplier If bottom-up regulation were important, we expected nutrient addition to increase both primary producers and zooplankton. Western Mosquitofish predation significantly decreased the abundance of several zooplankton taxa, resulting in a trophic cascade with increased chlorophyll a (i.e., primary productivity). This effect did not differ between mesocosms with 5 or 10 fish. Nutrient addition had no significant effects on zooplankton; however, chlorophyll a was positively affected by both nitrogen addition and phosphorus addition. Our results suggest weak bottom-up regulation in our experimental community, but strong top-down regulation, emphasizing the potential consequences of introducing non-native Western Mosquitofish to native aquatic ecosystems.