APExposeDE an air good quality coverage dataset regarding Philippines 20102019

From Selfless
Jump to navigation Jump to search

The discovery of a low grade appendiceal mucinous neoplasm (LAMN) during appendectomy is a rare scenario. These neoplasms can progress to pseudomyxoma peritonei (PMP), however the incidence of progression is not well known.
The records of all patients with a diagnosis of localized LAMN found during appendectomy were identified, and demographic, tumor, surveillance, and outcome variables were analyzed.
Progression to PMP occurred in 20% of patients in an average of 12.4 months after appendectomy with median follow-up of 18 months. Tumor variables such as margin positivity, appendiceal perforation, and presence of extra-appendiceal acellular mucin or mucinous epithelium on the serosal were not significantly associated with progression.
During an average follow-up period of 18 months after surgery, progression to PMP occurred in a fifth of patients. It is difficult to predict which patients will progress, therefore cross-sectional imaging surveillance is recommended for all patients.
During an average follow-up period of 18 months after surgery, progression to PMP occurred in a fifth of patients. It is difficult to predict which patients will progress, therefore cross-sectional imaging surveillance is recommended for all patients.Providing medical care at the highest levels across various reproductive endocrinology and infertility settings necessitates seamless partnership among multiple people with diverse skill sets. In this introductory article for this month's Views and Reviews, the concept of teaming is presented, including the key concepts of collaboration, assembling the right team members, establishing goals, inspiring and empowering others, and encouraging new approaches to optimize outcomes. Following this introduction, thought leaders from diverse reproductive endocrinology and infertility spaces, including clinical, ambulatory surgery, laboratory, and research settings, present their experiences using teaming models to adapt team members' thinking, elevate the quality of scientific productivity, and achieve excellence in both patient care and laboratory and clinical outcomes.
Hyperthermia is known to be beneficial to patients affected by various diseases. Irisin is a key regulators of fat metabolism known to be released as response to cold. Brain Derived Neurotrophic Factor (BDNF) is a marker of neuroplasticity usually increased as response to acute exposure to human body stressors.
Effect of a repeated hyperthermia exposure programme on changes in circulating irisin and serum BDNF in healthy humans.
Setting, Participants Randomized, single-blind, cross-over trial in healthy humans conducted at Sechenov University Physiology Laboratory from April 2019. The treatment period was 2 weeks (wash-out 3 weeks). Researchers analysing serum biomarkers and questionnaires data were blinded to participants allocation. Participants were 20 healthy male (age 21.5±2.1 years).
Hyperthermia exposure programme (WBPH) versus sham exposure (SHAM) to hyperthermia (10 sessions in two weeks).
Changes in irisin and BDNF before and after short hyperthermia exposure.
Twenty participants were analyzed. Irisin increased significantly in group WBPH only 6.3μg/ml (mean with SD=1.6) compared to 5.4μg/ml (SD=1.7) in SHAM group; This value was also higher than baseline (5.0 mean with SD=1.1) in WBPH. After 10 sessions mean change in BDNF was higher in WBPH group vs SHAM BDNF was 28,263 (SD=4213) pg/ml in WBPH group and 24,064 (SD=5600) pg/ml in SHAM group. BDNF concentrations were significantly higher than baseline values in WBPH group only, 28,263 (SD 4213) vs 25,888 (SD 4316) pg/ml.
In healthy young humans a 2-week, ten sessions programme consisting of repeated exposure to hyperthermia resulted in a significantly higher increase of circulating Irisin and BDNF.
In healthy young humans a 2-week, ten sessions programme consisting of repeated exposure to hyperthermia resulted in a significantly higher increase of circulating Irisin and BDNF.Thermal traits are frequently used to explain variation in species distributions, abundance, and sensitivity to climate change. Due to their utility and ease of measurement, critical thermal limits in particular have proliferated across the ecophysiological literature. Critical limit assays can, however, have deleterious or even lethal effects on individuals and there is growing recognition that intermediate metrics of performance can provide a further, nuanced understanding of how species interact with their environments. Meanwhile, the scarcity of data describing sub-critical or voluntary limits, which have been proposed as alternatives to critical limits and can be collected under less extreme conditions, reduces their value in comparative analyses and broad-scale syntheses. To overcome these limitations and determine if sub-critical limits are viable proxies for upper and lower critical thermal limits we measured and compared the critical and sub-critical thermal limits of 2023 ants representing 51 species. Sub-critical limits in isolation were a satisfactory linear predictor for both individual and species critical limits and when species identity was also considered there were substantial gains in variance explained. These gains indicate that a species-specific conversion factor can further improve estimates of critical traits using sub-critical proxies. Sub-critical limits can, therefore, be integrated into broader syntheses of critical limits and confidently used to calculate common ecological metrics, such as warming tolerance, so long as uncertainty in estimates is explicitly acknowledged. Although lower thermal traits exhibited more variation than their upper counterparts, the stronger phylogenetic signal of lower thermal traits indicates that appropriate conversions for lower thermal traits can be inferred from congenerics or other closely related taxa.Fish can be identified as either low responders (LR) or high responders (HR) based on post-stress cortisol levels and whether they exhibit a proactive or reactive stress coping style, respectively. In this study, male Atlantic salmon (Salmo salar) from 17 families reared at 9 °C were repeatedly exposed to an acute handling stress over a period of four months, with plasma cortisol levels measured at 1 h post-stress. Fish were identified as either LR or HR if the total Z-score calculated from their cortisol responses fell into the lower or upper quartile ranges, respectively; with intermediate responders (IR) classified as the remainder. Salmon characterized as LR, IR or HR were then subjected to an incremental thermal challenge, where temperature was raised at 0.2 °C day-1 from their acclimation temperature (12 °C) to mimic natural sea-cage farming conditions during the summer in Newfoundland. Interestingly, feed intake remained high up to 22 °C, while previous studies have shown a decrease in salmon appetite ay not be beneficial to incorporate into Atlantic salmon breeding programs, especially if the goal is to improve growth performance and survival at high temperatures in sea-cages.In many mammalian species, including pigs, heat stress (HS) detrimentally leads to epithelium damage and increases intestinal permeability. However, the underlying molecular mechanisms are not thoroughly investigated yet. This study aimed to examine the RIP1/RIP3-ERK1/2 signaling pathway that regulates the expression of tight junction proteins in HS-treated pigs. In in vitro cultured intestinal porcine epithelial cells (IPEC-J2), HS induced the expression of tight junction proteins, ZO-1, claudin-1, and claudin-4, that are regulated by the ERK1/2-MAPK signaling pathway. Further, high expression of HSP70 in IPEC-J2 cells induced a significant decrease in receptor-interacting protein 1/3 (RIP1/3), phosphorylated ERK, and tight junction protein claudin-1 (P less then 0.05). Necrostatin-1 (A selective inhibitor of RIPK1) suppressed the upregulation of phosphorylated ERK1/2 induced by HS, indicating that the RIP1/RIP3 regulates ERK1/2 phosphorylation in IPEC-J2 under heat stress. In addition, HS significantly damaged the intestinal morphology characterized by reduction of villus length and crypt depth in in vivo porcine model. Moreover, the expression of tight junction, ZO-1, and claudin-4 were downregulated, whereas phosphorylated p38 and ERK1/2 were upregulated in the duodenum of heat-stressed pigs. Interestingly, a decrease in ZO-1 and claudin-1 was observed in the colon, where phosphorylated ERK1/2 was similar to that in the duodenum. Our results demonstrate that RIP1/RIP3-ERK1/2 signaling pathway regulates the expression of tight junction proteins in HS-pigs. This finding further advances the intestinal barrier function's underlying mechanisms associated with signaling regulation.Understanding the impact that heat stress has on critical life stages of an organism is essential when assessing population responses to extreme events. Heat stress may occur as repeated small-scale events or as a single prolonged event, which may cause different outcomes to the organism. check details Here, we subjected Helicoverpa punctigera (Wallengren) pupae to two temperatures (44.2 °C and 43 °C) and two exposure treatments - a single 3-h prolonged exposure prolonged and three repeated 1-h exposure period with 24 h recovery time between bouts - to assess the biological traits of individuals. The maximum temperatures were used as they were just below the critical thermal maximum (CTmax) 47.3 °C ± 0.3 °C of pupae for which they could survive exposure. Adults in the prolonged and repeated heat-stressed treatments had 1.70 and 3.34 more days to emergence and 1.57 and 3.30 days extended life span compared to those kept under a constant 25 °C temperature (control treatment). Both pre-oviposition and oviposition periods were extended in the heat-stressed groups. Fecundity in the prolonged and repeated heat-stressed females was reduced by 34.7% and 65.5% eggs in the 43 °C treatment group and by 94.3% and 93.6% eggs in the 44.2 °C treatment group compared to the control group. No eggs from females in either the prolonged and repeated heat-stress groups hatched. We establish that heat stress on pupae can influence the population dynamics of H. punctigera by reducing fecundity as well as extending the pre oviposition period, and affecting adult development. Also, as heat exposure on the parent generation resulted in no offspring production, it is critical to assess cross-generational responses to extreme heat stress.Although dynamic thermography skin temperature assessment has been used in medical field, scientific evidence in sports is scarce. The aim of the study was to assess changes in anterior thigh skin temperature in response to a cold stress test after a strength exercise fatiguing protocol. Ten physically active adults performed a familiarization session and two strength exercise sessions, one with dominant and the other with non-dominant lower limb. Participants performed bouts of 10 concentric and eccentric contractions of leg extensions in an isokinetic device until reaching around 30% of force loss. Infrared thermographic images were taken at baseline conditions and after the fatigue level from both thighs after being cooled using a cryotherapy system. ROIs included vastus medialis, rectus femoris, adductor and vastus lateralis. Skin temperature rewarming was assessed during 180s after the cooling process obtaining the coefficients of the following equation ΔSkin temperature = β0 + β1 * ln(T), being β0 and β1 the constant and slope coefficients, respectively, T the time elapsed following the cold stress in seconds, and ΔSkin temperature the difference between the skin temperature at T respect and the pre-cooling moment.