Anxiolytic aftereffect of continual intake of extra magnesium mineral chloride within rat
e consumed an adequate diversified diet. Given the inconsistent findings on associations between dietary diversity and obesity measures, this study suggests that targeting dietary diversity as an overweight/obesity prevention strategy requires careful consideration.
More than half of the pastoralists have consumed an adequate diversified diet. Given the inconsistent findings on associations between dietary diversity and obesity measures, this study suggests that targeting dietary diversity as an overweight/obesity prevention strategy requires careful consideration.Disease mapping aims to determine the underlying disease risk from scattered epidemiological data and to represent it on a smoothed colored map. learn more This methodology is based on Bayesian inference and is classically dedicated to non-infectious diseases whose incidence is low and whose cases distribution is spatially (and eventually temporally) structured. Over the last decades, disease mapping has received many major improvements to extend its scope of application integrating the temporal dimension, dealing with missing data, taking into account various a prioris (environmental and population covariates, assumptions concerning the repartition and the evolution of the risk), dealing with overdispersion, etc. We aim to adapt this approach to model rare infectious diseases proposing specific and generic variants of this methodology. In the context of a contagious disease, the outcome of a primary case can in addition generate secondary occurrences of the pathology in a close spatial and temporal neighborhood; this can result in local overdispersion and in higher spatial and temporal dependencies due to direct and/or indirect transmission. In consequence, we test models including a Negative Binomial distribution (instead of the usual Poisson distribution) to deal with local overdispersion. We also use a specific spatio-temporal link in order to better model the stronger spatial and temporal dependencies due to the transmission of the disease. We have proposed and tested 60 Bayesian hierarchical models on 400 simulated datasets and bovine tuberculosis real data. This analysis shows the relevance of the CAR (Conditional AutoRegressive) processes to deal with the structure of the risk. We can also conclude that the negative binomial models outperform the Poisson models with a Gaussian noise to handle overdispersion. In addition our study provided relevant maps which are congruent with the real risk (simulated data) and with the knowledge concerning bovine tuberculosis (real data).Periodontal diseases are bacteria-induced inflammatory disorders that lead to the destruction of the tooth-supporting tissues. Active compounds endowed with a capacity to regulate the inflammatory response are regarded as potential therapeutic agents for the treatment of periodontal diseases. The aim of this study was to characterize the anti-inflammatory properties of a polyphenolic cinnamon fraction. Chromatographic and mass spectrometry analyses of the polyphenolic composition of the cinnamon fraction revealed that phenolic acids, flavonoids (flavonols, anthocyanins, flavan-3-ols), and procyanidins make up 9.22%, 0.72%, and 10.63% of the cinnamon fraction, respectively. We used a macrophage model stimulated with lipopolysaccharides (LPS) from either Aggregatibacter actinomycetemcomitans or Escherichia coli to show that the cinnamon fraction dose-dependently reduced IL-6, IL-8, and TNF-α secretion. Evidence was brought that this inhibition of cytokine secretion may result from the ability of the fraction to prevent LPS-induced NF-κB activation. We also showed that the cinnamon fraction reduces LPS binding to monocytes, which may contribute to its anti-inflammatory properties. Lastly, using a competitor assay, it was found that the cinnamon fraction may represent a natural PPAR-γ ligand. Within the limitations of this in vitro study, the cinnamon fraction was shown to exhibit a therapeutic potential for the treatment of periodontal diseases due to its anti-inflammatory properties.
Circulating biomarkers are associated with the development of coronary heart disease (CHD) and its complications by reflecting pathophysiological pathways and/or organ dysfunction. We explored the associations between 157 cardiovascular (CV) and inflammatory biomarkers and CV death using proximity extension assays (PEA) in patients with chronic CHD.
The derivation cohort consisted of 605 cases with CV death and 2,788 randomly selected non-cases during 3-5 years follow-up included in the STabilization of Atherosclerotic plaque By Initiation of darapLadIb TherapY (STABILITY) trial between 2008 and 2010. The replication cohort consisted of 245 cases and 1,042 non-cases during 12 years follow-up included in the Ludwigshafen Risk and Cardiovascular Health (LURIC) study between 1997 and 2000. Biomarker levels were measured with conventional immunoassays and/or with the OLINK PEA panels CVD I and Inflammation. Associations with CV death were evaluated by Random Survival Forest (RF) and Cox regression analyses. Bsults from coronary angiograms and follow-up of nonfatal events.
Profiles of levels of multiple plasma proteins might be useful for the identification of different pathophysiological pathways associated with an increased risk of CV death in patients with chronic CHD.
ClinicalTrials.gov NCT00799903.
ClinicalTrials.gov NCT00799903.Understanding how fate specification of distinct cell-types from multipotent progenitors occurs is a fundamental question in embryology. Neural crest stem cells (NCSCs) generate extraordinarily diverse derivatives, including multiple neural, skeletogenic and pigment cell fates. Key transcription factors and extracellular signals specifying NCSC lineages remain to be identified, and we have only a little idea of how and when they function together to control fate. Zebrafish have three neural crest-derived pigment cell types, black melanocytes, light-reflecting iridophores and yellow xanthophores, which offer a powerful model for studying the molecular and cellular mechanisms of fate segregation. Mitfa has been identified as the master regulator of melanocyte fate. Here, we show that an Mitf-related transcription factor, Tfec, functions as master regulator of the iridophore fate. Surprisingly, our phenotypic analysis of tfec mutants demonstrates that Tfec also functions in the initial specification of all three pigment cell-types, although the melanocyte and xanthophore lineages recover later.