C3Arylation associated with indoles along with aryl ketones by means of CCCH activations
Results of simultaneous notched-noise masking are commonly interpreted as reflecting the bandwidth of underlying auditory filters. This interpretation assumes that listeners detect a tone added to notched-noise based on an increase in energy at the output of an auditory filter. Previous work challenged this assumption by showing that randomly and independently varying (roving) the levels of each stimulus interval does not substantially worsen listener thresholds [Lentz, Richards, and Matiasek (1999). J. Acoust. Soc. Am. 106, 2779-2792]. Lentz et al. further challenged this assumption by showing that filter bandwidths based on notched-noise results were different from those based on a profile-analysis task [Green (1983). Am. Psychol. 38, 133-142; (1988). (Oxford University Press, New York)], although these estimates were later reconciled by emphasizing spectral peaks of the profile-analysis stimulus [Lentz (2006). J. Acoust. Soc. Am. 120, 945-956]. Here, a single physiological model is shown to account for performance in fixed- and roving-level notched-noise tasks and the Lentz et al. profile-analysis task. This model depends on peripheral neural fluctuation cues that are transformed into the average rates of model inferior colliculus neurons. Neural fluctuations are influenced by peripheral filters, synaptic adaptation, cochlear amplification, and saturation of inner hair cells, an element not included in previous theories of envelope-based cues for these tasks. Results suggest reevaluation of the interpretation of performance in these paradigms.This paper derives and demonstrates a one-dimensional acoustic metamaterial homogenization method. The homogenization method uses a multiple-scales approximation with Hamilton's principle, a weak-form representation of the dynamic equation. While the multiple-scales approximation makes the predicted effective material properties of this method inexact, the method is shown to be highly versatile. Analytical and numerical examples are given showing the ability of the homogenization method to account for viscosity and finite-amplitude effects.Previous studies have suggested a strong effect of reverberation on speech intelligibility (SI) in cochlear implant (CI) recipients. In many of them, different reverberation conditions were obtained by altering the acoustic absorption of a single room, thereby omitting the effect of the room volume. In addition, studies that have investigated the combined effects of reverberation and noise on SI have overlooked the effect of reverberation on the modulation of the noise. Selleck M3541 In the present study, SI was measured unilaterally in 12 CI recipients in quiet and in noise using a three-dimensional loudspeaker array. Target speech was convolved with room impulse responses (RIRs) recorded at three talker-to-listener distances in five physical rooms with distinct reverberation times. Noise consisted of four two-talker dialogues convolved with RIRs measured at fixed positions around the listener. Results in quiet suggest that a significant drop in SI occurs mainly at long talker-to-listener distances, and small reverberant rooms affect SI the most. In noise, the most detrimental type of noise is anechoic as it is the most modulated. Overall, the results suggest that at fixed signal-to-noise ratios the effects of noise and reverberation are smallest at short distances in large rooms or in small rooms with some reverberation.Microbubble translations driven by ultrasound-induced radiation forces can be beneficial for applications in ultrasound molecular imaging and drug delivery. Here, the effect of size range in microbubble populations on their translations is investigated experimentally and theoretically. The displacements within five distinct size-isolated microbubble populations are driven by a standard ultrasound-imaging probe at frequencies ranging from 3 to 7 MHz, and measured using the multi-gate spectral Doppler approach. Peak microbubble displacements, reaching up to 10 μm per pulse, are found to describe transient phenomena from the resonant proportion of each bubble population. The overall trend of the statistical behavior of the bubble displacements, quantified by the total number of identified displacements, reveals significant differences between the bubble populations as a function of the transmission frequency. A good agreement is found between the experiments and theory that includes a model parameter fit, which is further supported by separate measurements of individual microbubbles to characterize the viscoelasticity of their stabilizing lipid shell. These findings may help to tune the microbubble size distribution and ultrasound transmission parameters to optimize the radiation-force translations. They also demonstrate a simple technique to characterize the microbubble shell viscosity, the fitted model parameter, from freely floating microbubble populations using a standard ultrasound-imaging probe.The concept of the radiation modes, originally proposed for free-field problems, has found its widespread use in sound radiation analyses of vibrating structures and their active control applications. In this paper, the sound radiation of a flexible structure, flush-mounted inside a duct in both 2D and 3D configurations, is investigated via an energy-based formulation in conjunction with the near-field integration technique. The structural radiation characteristics are first discussed in terms of modal radiation efficiency, which exhibits obvious oscillating behavior with respect to frequencies, in which symmetric patterns are dominant with smooth variations for small acoustic wavenumbers. Then the interior sound radiation modes are investigated. It is shown that, as compared with their free-space counterparts, the lower-order radiation modes in a duct are more sensitive and prone to be affected by the duct starting from its cut-on frequency. Drastic changes in the radiation mode shapes are observed around the cut-on frequency and each of its multiples/harmonics. Finally, analyses are extended to a coupled panel-duct system. It is observed that, contrary to the free-space case, lower-order radiation modes exhibit predominant variations along the duct length direction, suggesting a possible simplification of the 3D configuration into a 2D one.