Computational model of Ecadherin clustering under force

From Selfless
Jump to navigation Jump to search

This study optimized our previously proposed simulation program for the approximate irregular field dose distribution (SPAD) and applied it to a respiratory motion compensation system (RMCS) and respiratory motion simulation system (RMSS). The main purpose was to rapidly analyze the two-dimensional dose distribution and evaluate the compensation effect of the RMCS during radiotherapy.
This study modified the SPAD to improve the rapid analysis of the dose distribution. In the experimental setup, four different respiratory signal patterns were input to the RMSS for actuation, and an ultrasound image tracking algorithm was used to capture the real-time respiratory displacement, which was input to the RMCS for actuation. A linear accelerator simultaneously irradiated the EBT3 film. The gamma passing rate was used to verify the dose similarity between the EBT3 film and the SPAD, and conformity index (CI) and compensation rate (CR) were used to quantify the compensation effect.
The Gamma passing rates were 70.48-81.39% (2%/2mm) and 88.23-96.23% (5%/3mm) for various collimator opening patterns. However, the passing rates of the SPAD and EBT3 film ranged from 61.85% to 99.85% at each treatment time point. Under the four different respiratory signal patterns, CR ranged between 21% and 75%. After compensation, the CI for 85%, 90%, and 95% isodose constraints were 0.78, 0.57, and 0.12, respectively.
This study has demonstrated that the dose change during each stage of the treatment process can be analyzed rapidly using the improved SPAD. After compensation, applying the RMCS can reduce the treatment errors caused by respiratory movements.
This study has demonstrated that the dose change during each stage of the treatment process can be analyzed rapidly using the improved SPAD. After compensation, applying the RMCS can reduce the treatment errors caused by respiratory movements.Sudden death in epilepsy or SUDEP is a fatal condition that accounts for more than 4000 deaths each year. Limited clinical and preclinical data on sudden death suggest critical contributions from autonomic, cardiac, and respiratory pathways. A potential mechanism for such sudden and severe cardiorespiratory dysregulation may be linked to acid reflux-induced laryngospasm. Here, we expand on our previous investigations and utilize a novel multimodal approach to provide visual evidence of acid reflux-initiated cardiorespiratory distress and subsequent sudden death in seizing rats. We used systemic kainic acid to acutely induce seizure activity in Long Evans rats, under urethane anesthesia. We recorded electroencephalography (EEG), electrocardiography (ECG), chest plethysmography, and esophageal pH signals through a multimodal recording platform, during simultaneous fast MRI scans of the rat stomach and esophagus. MRI images, in correlation with electrophysiology data were used to identify seizure progression, stomach acid movement up the esophagus, cardiorespiratory changes, and sudden death. In all cases of sudden death, esophageal pH recordings alongside MRI images visualized stomach acid movement up the esophagus. Severe cardiac (ST segment elevation), respiratory (intermittent apnea) and brain activity (EEG narrowing due to hypoxia) changes were observed only after acid reached larynx, which strongly suggested onset of laryngospasm following acid reflux. The complementary information coming from electrophysiology and fast MRI scans provided insight into the mechanism of esophageal reflux, laryngospasm, obstructive apnea, and subsequent sudden death in seizing animals. The results carry clinical significance as it outlines a potential mechanism that may be relevant to SUDEP in humans.To direct financial resources to cleaner production enterprises and achieve the goal of environmental governance, the Chinese government has devoted increasing efforts to facilitating green finance. As one of the major policies of green finance, the Green Credit Policy (GCP) was issued in 2012. Evaluating whether the GCP can promote green development has important significance, but few studies have explored its policy effects for the investment and financing behavior of "two high" (high energy consumption and high pollution) enterprises and environmental quality from both micro and macro perspectives. Taking the promulgation of the GCP as a quasi-natural experiment, based on a panel dataset involving 945 A-share listed companies and 30 provinces for the period of 2004-2017, this paper adopts the difference-in-difference model to explore the investment and financing behavior changes of enterprises and environmental impacts of the GCP. The following conclusions are derived. (1) The GCP provides incentives for the short-term financing behavior of "two high" enterprises, but it has a punitive effect in the long term and significantly inhibits the investment behavior of such enterprises. SBE-β-CD mouse (2) The GCP contributes to the mitigation of sulfur dioxide and wastewater emissions. (3) The GCP has a greater effect on investment and financing behavior among state-owned and large-scale "two high" enterprises than among medium-sized and micro enterprises. (4) There exists regional heterogeneity in the effects of the GCP on the investment and financing of "two high" enterprises and environmental quality. The GCP has positive impacts in the eastern and western regions, and the policy effect is not obvious in the central region.Proso millet (Panicum miliaceum L.) is resilient to abiotic stress, especially to land degradation caused by soil salinization. link2 However, the mechanisms by which its roots adapt and tolerate salt stress are obscure. In this study, plants of a salt-sensitive cultivar (SS 212) and a salt-tolerant cultivar (ST 47) of proso millet were exposed to severe salt stress and subsequent re-watering. ST 47 exhibited greater salt tolerance than SS 212, as evidenced by higher increases in total root length (TRL), root surface area (RSA), root tip number (RTN). Moreover, microstructural analysis showed that relative to SS 212, the roots of ST 47 could maintain more intact internal structures and thicker cell walls under salt stress. Digital RNA sequence analysis revealed that ST 47 maintained better Na+/K+ balance to resist Na+ toxicity via a higher capability to restrict Na+ uptake, vacuolar Na+ sequestration, and Na+ exclusion. link3 The mechanism for Na+ toxicity resistance in ST 47 involved promoting cell wall composition changes via efficient regulation of galactose metabolism and biosynthesis of cellulose and phenylpropanoids. Overall, this study provides valuable salt-tolerant cultivar resources and mechanisms for regulating salt tolerance, which could be applied for the rehabilitation of saline lands.Chemical washing has been carried out to remediate soil contaminated with heavy metals. In this study, the appropriate washing conditions for N,N-bis(carboxymethyl)-L-glutamic acid (GLDA) combined with ascorbic acid were determined to remove As, Cd, and Pb in the soil from the smelting site. The mechanism of heavy metal removal by the washing agent was also clarified. The results showed that heavy metals in the soil from the smelting site can be effectively removed. The removal percentages of As, Cd, and Pb in the soil from the smelting site were found to be 34.49%, 63.26%, and 62.93%, respectively, under optimal conditions (GLDA and ascorbic acid concentration ratio of 520, pH of 3, washing for 60 min, and the liquid-to-solid ratio of 10). GLDA combined with ascorbic acid efficiently removes As, Cd, and Pb from the soil through synergistic proton obstruction, chelation, and reduction. GLDA can chelate with iron and aluminum oxides while directly chelate with Cd and Pb. Ascorbic acid can reduce both Fe(III) to Fe(II) and As(III) to As0. The dissolution of As was promoted by indirectly preempting the binding sites of iron and aluminum in the soil while those of Cd and Pb were improved by directly interrupting the binding sites. This study suggested that GLDA combined with ascorbic acid is an effective cleanup technology to remove As, Cd, and Pb simultaneously from contaminated smelting site soils.Climate change and human activities have profoundly changed the structure and functioning of alpine grassland ecosystems on the Tibetan Plateau, the most critical ecological safety shelter for Asia. However, it remains unclear to what degree human activity intensity has impacted the alpine grasslands of the Tibetan Plateau. Here we quantify human activity intensity on alpine grasslands of the Tibetan Plateau based on the relationship between actual and potential net primary production. We found that human activity intensity decreased by 16.1% from 2000 to 2017 across the alpine grasslands, which might be driven by recent ecological conservation policies, especially reductions in livestock numbers. Critical thresholds, which show marked grassland responses to different levels of human disturbances, were identified for each ecozone. The net primary production of dry grasslands on the western ecozones was more resistant to human disturbances but with lower resilience than other alpine grasslands on the plateau. Our findings are beneficial to design practical countermeasures to adapt to climate change and recover damaged grasslands on Tibetan Plateau.Following the escalating human population growth and rapid urbanization, the tremendous amount of urban and industrial waste released leads to a series of critical issues such as health issues, climate change, water crisis, and pollution problems. With the advantages of a favorable carbon life cycle, high photosynthetic efficiencies, and being adaptive to harsh environments, algae have attracted attention as an excellent agent for pollution prevention and waste phycoremediation. Following the concept of circular economy and biorefinery for sustainable production and waste minimization, this review discusses the role of four different algal-based wastewater treatment technologies, including high-rate algal ponds (HRAPs), HRAP-absorption column (HRAP-AC), hybrid algal biofilm-enhanced raceway pond (HABERP) and algal turf scrubber (ATS) in waste management and resource recovery. In addition to the nutrient removal mechanisms and operation parameters, recent advances and developments have been discussed for each technology, including (1) Innovative operation strategies and treatment of emerging contaminants (ECs) employing HRAPs, (2) Biogas upgrading utilizing HRAP-AC system and approaches of O2 minimization in biomethane, (3) Operation of different HABERP systems, (4) Life-cycle and cost analysis of HRAPs-based wastewater treatment system, and (5) Value-upgrading for harvested algal biomass and life-cycle cost analysis of ATS system.This review article presents an overview of the commercially available methods to measure particulate matter (PM) from stationary sources, focusing on techniques to measure mass concentration. Mass concentration is the requirement for the majority of current regulations not only in the UK and Europe but also Worldwide. The process of particulate emission monitoring has been used and developed over the last 30 years as a result of increasing demands of legislation development and clean air initiatives. When deciding upon the measurement technique, the operator must consider; range of device, portability, usability, installation requirements, expected concentration, purpose of measurement, particle characteristics, cost and diameter of stack. This review aims to; give direction to operators looking for a measurement technique to measure mass concentration of particulate matter emissions, give direction to researchers working within the field of particulate measurement with a view to improving existing and developing new techniques and give strategy for selection of equipment.