Cyclodextrinassisted surfaceenhanced Raman spectroscopy a crucial review
Bodyweight, FM, bodyfat%, RMR, and blood hormones (T3, T4, and leptin) increased significantly (p less then 0.05) at the group level. Relative (%Δ) increases in fat mass were associated with △RMR (τ = 0.90; p = 0.001) and △leptin (τ = 0.68; p = 0.02), and △leptin was associated with △RMR (τ = 0.59; p = 0.03). The time course for recovery appears to vary substantially between individuals potentially due to strategies implemented postcompetition.Physical activity (PA) during childhood plays an important role in brain development. This role is played in both the structural domain, prefrontal cortex area, and in the functional domain, involving the higher cognitive functions, including the executive functions (EF). Working memory (WM), inhibition, and switching as fundamental EF were investigated in an Italian children sample before and after four months of an Enriched Sports Activities-Program (ESA-Program). EFs were assessed at pre-test and post-test using, respectively, the digit span test, the color word Stroop test, and the trail making test derived from Millisecond Software. The Italian sample was composed of 141 children aged 8.54 years. The intervention group (IG) was composed of 61 children and the control group (CG) of 80 children. Significant differences in WM (p 0.05). Since this finding suggests that brain functioning is sensitive to lifestyle factors, such as PA, an essential goal for ESA-Program is to emphasize the importance of PA to enhance cognitive skills in childhood and prevent sedentary life.We are glad to introduce the Second Journal Club of Volume Five, Second Issue. This edition is focused on relevant studies published in the last few years in the field of resistance training, chosen by our Editorial Board members and their colleagues. We hope to stimulate your curiosity in this field and to share with you the passion for the sport, seen also from the scientific point of view. The Editorial Board members wish you an inspiring lecture.The relationship between posture, spine, and temporomandibular joint (TMJ) is still a hotly debated topic in medicine. TMJ takes part in different physiological functions of the organism, starting from its embryological development, it is possible that it influences different vital functions. There is a strong connection between the respiratory tract and dental/maxillary occlusion or anatomy. The altered physiology of this district leads to pathologies that could affect the whole organism. On the contrary, it is also possible to highlight some symptoms of distant organism districts. Knowing well the pathophysiology of this district and semiotics, it is also possible to diagnose pathologies affecting other organs.The vestibular system is located in the inner ear and is responsible for maintaining balance in humans. Bilateral vestibular dysfunction (BVD) is a disorder that adversely affects vestibular function. This results in symptoms such as postural imbalance and vertigo, increasing the incidence of falls and worsening quality of life. Current therapeutic options are often ineffective, with a focus on symptom management. Artificial stimulation of the vestibular system, via a vestibular prosthesis, is a technique being explored to restore vestibular function. This review systematically searched for literature that reported the effect of artificial vestibular stimulation on human behaviours related to balance, using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) technique. A total of 21 papers matched the inclusion criteria of the literature search conducted using the PubMed and Web of Science databases (February 2019). The populations for these studies included both healthy adults and patients with BVD. In every paper, artificial vestibular stimulation caused an improvement in certain behaviours related to balance, although the extent of the effect varied greatly. Various behaviours were measured such as the vestibulo-ocular reflex, postural sway and certain gait characteristics. Two classes of prosthesis were evaluated and both showed a significant improvement in at least one aspect of balance-related behaviour in every paper included. No adverse effects were reported for prostheses using noisy galvanic vestibular stimulation, however, prosthetic implantation sometimes caused hearing or vestibular loss. Significant heterogeneity in methodology, study population and disease aetiology were observed. The present study confirms the feasibility of vestibular implants in humans for restoring balance in controlled conditions, but more research needs to be conducted to determine their effects on balance in non-clinical settings.The brachial plexus represents a complex anatomical structure in the upper limb. This "network" of peripheral nerves permits the rearrangement of motor efferent fibers, coming from different spinal nerves, in several terminal branches directed to upper limb muscles. Moreover, afferent information coming from different cutaneous regions in upper limb are sorted in different spinal nerves through the brachial plexus. Severe brachial plexus injuries are a rare clinical condition in the general population and in sport medicine, but with dramatic consequences on the motor and sensory functions of the upper limb. In some sports, like martial arts, milder injuries of the brachial plexus can occur, with transient symptoms and with a full recovery. Clinical evaluation represents the cornerstone in the assessment of the athletes with brachial plexus injuries. Electrodiagnostic studies and imaging techniques, like magnetic resonance and high-frequency ultrasound, could be useful to localize the lesion and to define an appropriate treatment and a functional prognosis. Several conservative and surgical techniques could be applied, and multidisciplinary rehabilitative programs could be performed to guide the athlete toward the recovery of the highest functional level, according to the type of injury.This study aims to assess the correspondence between session rating of perceived exertion (sRPE) breakpoints with both the first lactate threshold (LT1) and the second lactate threshold (LT2) in elite open water swimmers (OWS). Six elite OWS of the National Olympic Team specialized in distances between 5 and 25 km participated to the study. OWS performed a set of 6 times 500 m incremental swimming step test during which blood lactate concentration (BLC), split time (ST), stroke frequency (SF), and rating of perceived exertion (RPE) were collected. To assess the corresponding breakpoints, we considered LT1 as the highest workload not associated with rise in BLC and LT2 as the increase of 2mM above LT1. INCB024360 According to the LT1 and LT2, the identified zones were Z1 ≤3, Z2 between 4 and 6, Z3 ≥ 7. In conclusion, the intensity zones determined for OWS resulted different from what previously reported for other endurance disciplines.