Encephalitis pursuing COVID19 disease
Brain-derived neurotrophic factor (BDNF) and neurotrophin receptors have been recognized as fundamental regulators of normal brain development, homeostasis, and plasticity. They have also been studied in the behavior of central nervous system tumors. Here, we studied the pattern of BDNF, TrkB and p75NTR immunoexpression in peripheral benign and malignant neural lesions in head and neck.
This cross-sectional analytical study included 79 cases of head and neck neural lesions. Nineteen cases of traumatic neuromas (TN), 20 cases of granular cell tumors (GCT), 16 cases of neurofibromas (NF), 20 cases of schwannomas (SC), and 4 malignant peripheral nerve sheath tumor (MPNST) were submitted to immunohistochemistry with BDNF, TrkB, and p75NTR antibodies. A semi-quantitative analysis was performed.
The analysis of BDNF demonstrated a high percentage of positive cells in TN, GCT and SC with a decrease in cases of NF and MPNST. TrkB presented a lower significant immunoexpression in GCT in relation to the TN, NF, SC, and MPNST (P<.0001); and TN showed less percentage of positive cell compared to SC (P=.0017). Regarding p75NTR, the percentage of positive cell was significantly reduced in MPNST compared GCT (P=.009), NF (P=.0138) and SC (P=.0069). Also, a decrease in TN compared to GCT (P=.007) was observed.
Our results showed the immunoreactivity of BDNF, TrkB, and p75NTR in head and neck peripheral neural lesions. Reduction of BDNF and p75NTR in MPNST might suggest down-regulation during the acquisition of malignant phenotype.
Our results showed the immunoreactivity of BDNF, TrkB, and p75NTR in head and neck peripheral neural lesions. Reduction of BDNF and p75NTR in MPNST might suggest down-regulation during the acquisition of malignant phenotype.Iron-sulfur (Fe-S) clusters are prosthetic groups on proteins that function in a range of enzymatic and electron transfer reactions. Fe-S cluster synthesis is essential for the survival of all eukaryotes. Independent Fe-S cluster biosynthesis pathways occur in the mitochondrion, plastid, and cytosolic compartments of eukaryotic cells. Little is known about the cytosolic Fe-S cluster biosynthesis in apicomplexan parasites, the causative agents of diseases such as malaria and toxoplasmosis. NBP35 serves as a key scaffold protein on which cytosolic Fe-S clusters assemble, and has a cytosolic localization in most eukaryotes studied thus far. Unexpectedly, we found that the NBP35 homolog of the apicomplexan Toxoplasma gondii (TgNBP35) localizes to the outer mitochondrial membrane, with mitochondrial targeting mediated by an N-terminal transmembrane domain. this website We demonstrate that TgNBP35 is critical for parasite proliferation, but that, despite its mitochondrial localization, it is not required for Fe-S cluster synthesis in the mitochondrion. Instead, we establish that TgNBP35 is important for the biogenesis of cytosolic Fe-S proteins. Our data are consistent with TgNBP35 playing a central and specific role in cytosolic Fe-S cluster biosynthesis, and imply that the assembly of cytosolic Fe-S clusters occurs on the cytosolic face of the outer mitochondrial membrane in these parasites.As patients are now routinely having large somatic genomic testing panels undertaken as part of routine management, there is the rising likelihood of uncovering the presence of a germline pathogenic variant. This may be found on testing undertaken on plasma (ctDNA) or tissue. This has led to the need for clear guidelines for oncologists about how to manage such results, including which variants require validation, how this should be undertaken, and what potential problems may arise. This requires an understanding of the limits of testing, and the pitfalls that may be encountered. In this review, we assess the frequency of detecting germline variants through tumor-only sequencing, the necessary considerations for such information to be analyzed and the role of the molecular tumor board in considering results. We assess the additional considerations for interpretation of the underlying tumor, use of ctDNA or tissue for testing, clonal hematopoiesis, and hypermutation.Previous studies investigating associations between white matter alterations and duration of temporal lobe epilepsy (TLE) have shown differing results, and were typically limited to univariate analyses of tracts in isolation. In this study, we apply a multivariate measure (the Mahalanobis distance), which captures the distinct ways white matter may differ in individual patients, and relate this to epilepsy duration. Diffusion MRI, from a cohort of 94 subjects (28 healthy controls, 33 left-TLE and 33 right-TLE), was used to assess the association between tract fractional anisotropy (FA) and epilepsy duration. Using ten white matter tracts, we analysed associations using the traditional univariate analysis (z-scores) and a complementary multivariate approach (Mahalanobis distance), incorporating multiple white matter tracts into a single unified analysis. For patients with right-TLE, FA was not significantly associated with epilepsy duration for any tract studied in isolation. For patients with left-TLE, the FA of two limbic tracts (ipsilateral fornix, contralateral cingulum gyrus) were significantly negatively associated with epilepsy duration (Bonferonni corrected p less then .05). Using a multivariate approach we found significant ipsilateral positive associations with duration in both left, and right-TLE cohorts (left-TLE Spearman's ρ = 0.487, right-TLE Spearman's ρ = 0.422). Extrapolating our multivariate results to duration equals zero (i.e., at onset) we found no significant difference between patients and controls. Associations using the multivariate approach were more robust than univariate methods. The multivariate Mahalanobis distance measure provides non-overlapping and more robust results than traditional univariate analyses. Future studies should consider adopting both frameworks into their analysis in order to ascertain a more complete understanding of epilepsy progression, regardless of laterality.
Innate immunity response to local dysbiosis seems to be one of the most important immunologic backgrounds of chronic rhinosinusitis (CRS) and concomitant asthma. We aimed to assess clinical determinants of upper-airway dysbiosis and its effect on nasal inflammatory profile and asthma risk in young children with CRS.
We recruited one hundred and thirty-three children, aged 4-8years with doctor-diagnosed CRS with or without asthma. The following procedures were performed in all participants face-to-face standardized Sinus and Nasal Quality of Life questionnaire, skin prick test, taste perception testing, nasopharynx swab, and sampling of the nasal mucosa. Upper-airway dysbiosis was defined separately by asthma-specific microbiome composition and reduced biodiversity. Multivariate methods were used to define the risk factors for asthma and upper-airway dysbiosis and their specific inflammatory profile of nasal mucosa.
The asthma-specific upper-airway microbiome composition reflected by the decreased ratio of Patescibacteria/Actinobacteria independently of atopy increased the risk of asthma (OR8.