Engineering and educational problems toward pandemicresilient flight handling
Magnetocaloric effect in (111)-oriented La0.7Sr0.3MnO3-SrRuO3 (LSMO-SRO) superlattices grown with both the stacking orders by reversing the individual layer thickness on (111)-oriented SrTiO3(STO) substrates using the pulsed laser deposition technique has been studied. Pseudomorphic growth with 0.64% in-plane tensile strain in [11 unit cell (u.c.)SRO/3u.c.LSMO]×15 superlattice is favourable for a larger change in entropy (ΔSM) as compared to relaxed growth with in-plane compressive strain in [11u.c.LSMO/3u.c.SRO]×15 superlattice. The reduction of ΔSM in [11u.c.LSMO/3u.c.SRO]×15 could be due to the orientation-dependent in-phase and out-of-phase tilt of the unit cell between ±1° along the 103pc of the 103pc, which softens the exchange coupling and leads to the faster alignment of the magnetization near the Curie temperature (TC). Stabilization of the orthorhombic phase of LSMO in the superlattices with both stacking orders is evidenced from the existence of anomaly around the TC of LSMO and SRO in the temperature-dependent phonon frequency shifts. Reduction in symmetry of LSMO from the rhombohedral to orthorhombic structure modulates the Mn-O-Mn bond length and angles, which induces the spin reorientations and hence, modifies the electronic and magnetic properties in these LSMO-SRO superlattices. The ΔSM of these superlattices suggest that the strain, magnitude of the magnetic field, volume and magnetization of the ferromagnet can control the magnetocaloric effect. These results will be useful for designing the magnetic entropy based devices to improve renewable energy systems.Different from traditional chemical surface modification, localized modification of the reducing end groups of cellulose nanocrystals (CNCs), i.e. the active aldehyde groups, provides new opportunities for diverse functional applications of this renewable nanomaterial without altering its surface chemistry and properties. Numerous reviews have deeply discussed the surface modification of the hydroxyl groups of CNCs, but no critical comment has been reported on the reducing end modification approach. This review is a comprehensive summary on the modification of the CNC reducing end, presenting the reaction mechanisms and conditions, discussing the different chemical modification strategies and characterization techniques, potential applications and future challenges in this field. In addition, the comparison between surface and end modification strategies of CNCs will highlight the potential of reducing end-functionalized CNCs to be used in various applications as an alternative to traditional surface-modified CNCs, or as additional functional nanoparticles for the design of advanced functional materials.Dihydromethidine (DHM) labeled with 18F at the para position of the peripheral benzene ring was designed as a positron emission tomography (PET) radiotracer for non-invasive imaging of reactive oxygen species (ROS). This compound readily crosses the blood-brain barrier and is oxidized by ROS, and the oxidation product is retained intracellularly. PET imaging of ROS-producing rat brain microinfused with sodium nitroprusside identified specific brain regions with high ROS concentrations. This tracer should be useful for studies of the pathophysiological roles of ROS, and in the diagnosis of neurodegenerative diseases.A low-valent magnesium(i) complex [(XylNacnac)Mg]2 was employed as a highly efficient precatalyst for the hydroboration of a variety of cyclic and linear organic carbonates, polycarbonates, CO2 and esters with HBpin under mild conditions. The resultant boronates can be used for the preparation of the corresponding value-added diols, triols or alcohols through hydrolysis.To compromise high mechanical strength and efficient self-healing capability in an elastomer with dynamic crosslinks, optimization of the molecular structure is crucial in addition to the tuning of the dynamic properties of the crosslinks. Herein, we studied the effects of molecular weight, content of carboxy groups, and neutralization level of ionically crosslinked polyisoprene (PI) elastomers on their morphology, network rearrangement behavior, and self-healing and mechanical properties. In this PI elastomer, nanosized sphere-shaped ionic aggregates are formed by both neutralized and non-neutralized carboxy groups that act as stickers. The number density of the ionic aggregates that act as physical crosslinks increased with increase in the stickers' concentration, although the size of the ionic aggregates was independent of the molecular weight and the stickers' concentration. The ionic network was dynamically rearranged by the stickers' hopping between the ionic aggregates, and the rearrangement was accelerated by decreasing the neutralization level. We found that the 2Rg of the PI must be significantly larger than the average distance between the ionic aggregates to obtain a mechanically strong PI elastomer. We also found that further increase in the molecular weight is effective to enhance the dimensional stability of the elastomer. However, this approach reduced the elastomer's self-healing rate at the same time because the diffusion and randomization of the polymer chains between the damaged faces were reduced. C25-140 supplier In this work, we clearly demonstrated the principle in the optimization of the molecular structure for the ionically crosslinked PI elastomers to tune the mechanical and autonomous self-healing properties.Flexible piezocomposites have emerged as promising materials for highly durable wearable devices. Here, we propose a new design strategy, namely particle alignment engineering, to develop high performance flexible piezocomposites by dielectrophoresis (DEP). An ultrahigh piezoelectric voltage coefficient (g33) of 600 × 10-3 V m N-1 is achieved by a composite of (Ba0.85Ca0.15)(Ti0.90Zr0.10)O3 (BCZT) particles aligned in a polydimethylsiloxane (PDMS) matrix. To the best of our knowledge, this g33 value is by far the highest ever achieved in piezocomposites. The significantly improved poling electric voltage applied to the BCZT particles and hugely enhanced stress-transfer capability of the aligned composite synergistically contribute to the record-high piezoelectric response in flexible piezocomposites. The fabricated flexible piezoelectric touch sensor and wearable keyboard possess an excellent sensitivity and cycling stability, which demonstrate a promising strategy for exploring high performance piezocomposites for flexible device application.