Larginine methylation through PRMT2 stimulates IFN generation by way of TLR4IRF3 signaling process

From Selfless
Jump to navigation Jump to search

The recently identified SARS-CoV-2 betacoronavirus responsible for the COVID-19 pandemic has uncovered the age-associated vulnerability in the burden of disease and put aging research in the spotlight. The limited data available indicates that COVID-19 should be referred to as a gerolavic (from Greek, géros "old man" and epilavís, "harmful") infection because the infection rates, severity, and lethality are substantially higher in the population aged 60 and older. This is primarily due to comorbidity but may be partially due to immunosenescence, decreased immune function in the elderly, and general loss of function, fitness, and increased frailty associated with aging. Immunosenescence is a major factor affecting vaccination response, as well as the severity and lethality of infectious diseases. While vaccination reduces infection rates, and therapeutic interventions reduce the severity and lethality of infections, these interventions have limitations. Previous studies showed that postulated geroprotectors, such as sirolimus (rapamycin) and its close derivative rapalog everolimus (RAD001), decreased infection rates in a small sample of elderly patients. This article presents a review of the limited literature available on geroprotective and senoremediative interventions that may be investigated to decrease the disease burden of gerolavic infections. This article also highlights a need for rigorous clinical validation of deep aging clocks as surrogate markers of biological age. These could be used to assess the need for, and efficacy of, geroprotective and senoremediative interventions and provide better protection for elderly populations from gerolavic infections. This article does not represent medical advice and the medications described are not yet licensed or recommended as immune system boosters, as they have not undergone clinical evaluation for this purpose.This review summarizes ten years experience with male abusers of anabolic androgenic steroids (AAS). The typical user of AAS is male, aged between 20 and 40 and lifting weights. Illegal AAS are cheap and easily obtained via internet or local suppliers. AAS are mostly used in cycles with a duration between 6 and 18 weeks. Most AAS cycles contain multiple agents, used simultaneously in a dose vastly exceeding a substitution dose. A variety of other performance and image-enhancing drugs are commonly used, including human growth hormone, thyroid hormone, tamoxifen, clomiphene citrate and human chorionic gonadotrophin. Short term clinical and biochemical side effects are well established. Long term side effects are uncertain, but may include heart failure, mood-and anxiety disorders, hypogonadism and subfertility. We share our views on the management of common health problems associated with AAS abuse.OBJECTIVE Mechanisms of insulin resistance in polycystic ovary syndrome (PCOS) remain ill-defined, contributing to sub-optimal therapies. Recognising skeletal muscle plays a key role in glucose homeostasis we investigated early insulin signalling, its association with aberrant transforming growth factor β (TGFβ) regulated tissue fibrosis. We also explored the impact of aerobic exercise on these molecular pathways. METHODS A secondary analysis from a cross-sectional study was undertaken in women with (n=30) or without (n=29) PCOS across lean and overweight BMIs. A subset of participants with (n=8) or without (n=8) PCOS who were overweight completed 12-weeks of aerobic exercise training. Muscle was sampled before and 30 min into a euglycaemic-hyperinsulinaemic clamp pre- and post-training. RESULTS We found reduced signalling in PCOS of mechanistic target of rapamycin (mTOR). Exercise training augmented but did not completely rescue this signalling defect in women with PCOS. Genes in the TGFβ signalling network were upregulated in skeletal muscle in the overweight women with PCOS but were unresponsive to exercise training except for genes encoding LOX, collagen 1 and 3. CONCLUSIONS We provide new insights into defects in early insulin signalling, tissue fibrosis, and hyperandrogenism in PCOS-specific insulin resistance in lean and overweight women. PCOS-specific insulin-signalling defects were isolated to mTOR, while gene expression implicated TGFβ ligand regulating a fibrosis in the PCOS-obesity synergy in insulin resistance and altered responses to exercise. Interestingly, there was little evidence for hyperandrogenism as a mechanism for insulin resistance.As the mechanistic basis of polycystic ovary syndrome (PCOS) remains unknown, current management relies on symptomatic treatment. Hyperandrogenism is a major PCOS characteristic and evidence supports it playing a key role in PCOS pathogenesis. Classically androgens can act directly through the androgen receptor (AR), or indirectly, following aromatization, via the estrogen receptor (ER). We investigated the mechanism of androgenic actions driving PCOS by comparing the capacity of non-aromatizable dihydrotestosterone (DHT) and aromatizable testosterone to induce PCOS traits in wildtype (WT) and AR-knockout (ARKO) mice. DHT and testosterone induced the reproductive PCOS-like features of acyclicity and anovulation in WT females. In ARKO mice DHT did not cause reproductive dysfunction, however testosterone treatment induced irregular cycles and ovulatory disruption. These findings indicate that direct AR actions and indirect, likely ER actions, are important mediators of PCOS reproductive traits. DHT, but not testosterone, induced an increase in body weight, body fat, serum cholesterol and adipocyte hypertrophy in WT mice, but neither androgen induced these metabolic features in ARKO mice. These data infer that direct AR-driven mechanisms are key in driving the development of PCOS metabolic traits. Overall, these findings demonstrate that differing PCOS traits can be mediated via different steroid signaling pathways and indicate that a phenotype-based treatment approach would ensure effective targeting of the underlying mechanisms.TNM 8th edition introduces changes in the staging of patients with differentiated thyroid carcinoma (DTC). SP-2577 This study aims at assessing the value of TNM 8th edition in predicting response to therapy and structural recurrence of DTC. 480 DTC patients were retrospectively evaluated by 7th and 8th editions of TNM staging systems in relationship with risk stratification, response to therapy and recurrence of disease as defined by 2015 ATA guidelines. As compared to the 7th edition, TNM 8th led to downstage 136 patients (28.3%), with 97.5% of patients falling into lower stages (I-II) and only 2.5% remaining in higher stages (III-IV) (p less then 0.001). Patients who were downstaged in stages I-II by TNM 8th were classified more frequently at intermediate-high risk (p less then 0.001), had more frequently structural incomplete response to therapy (p=0.009) and had higher risk of structural recurrence (p=0.002) as compared to patients who were in the same TNM stages but were not downstaged. Specifically, the risk of structural recurrence was significantly higher in patients in whom the downstaging was induced by changes in tumour classification (Hazard ratio (HR) 6.