LevodopaBased Changes about Vocalic Presentation Actions through Prosodic Prominence Marking
The ability to grab, hold, and manipulate objects is a vital and fundamental operation in biological and engineering systems. Here, we present a soft gripper using a simple material system that enables precise and rapid grasping, and can be miniaturized, modularized, and remotely actuated. This soft gripper is based on kirigami shells-thin, elastic shells patterned with an array of cuts. The kirigami cut pattern is determined by evaluating the shell's mechanics and geometry, using a combination of experiments, finite element simulations, and theoretical modeling, which enables the gripper design to be both scalable and material independent. We demonstrate that the kirigami shell gripper can be readily integrated with an existing robotic platform or remotely actuated using a magnetic field. The kirigami cut pattern results in a simple unit cell that can be connected together in series, and again in parallel, to create kirigami gripper arrays capable of simultaneously grasping multiple delicate and slippery objects. These soft and lightweight grippers will have applications in robotics, haptics, and biomedical device design.Humans use all surfaces of the hand for contact-rich manipulation. Robot hands, in contrast, typically use only the fingertips, which can limit dexterity. In this work, we leveraged a potential energy-based whole-hand manipulation model, which does not depend on contact wrench modeling like traditional approaches, to design a robotic manipulator. Inspired by robotic caging grasps and the high levels of dexterity observed in human manipulation, a metric was developed and used in conjunction with the manipulation model to design a two-fingered dexterous hand, the Model W. This was accomplished by simulating all planar finger topologies composed of open kinematic chains of up to three serial revolute and prismatic joints, forming symmetric two-fingered hands, and evaluating their performance according to the metric. We present the best design, an unconventional robot hand capable of performing continuous object reorientation, as well as repeatedly alternating between power and pinch grasps-two contact-rich skills that have often eluded robotic hands-and we experimentally characterize the hand's manipulation capability. This hand realizes manipulation motions reminiscent of thumb-index finger manipulative movement in humans, and its topology provides the foundation for a general-purpose dexterous robot hand.R.U.R. Olaparib chemical structure created the term "robot" and the robot uprising meme, but Q.U.R. may be more relevant to robotics.A four-legged soft robot walks, rotates, and reacts to environmental obstacles by incorporating a soft pneumatic control circuit.A light and portable soft electro-pneumatic pump could power future soft robots.Human skin can sense subtle changes of both normal and shear forces (i.e., self-decoupled) and perceive stimuli with finer resolution than the average spacing between mechanoreceptors (i.e., super-resolved). By contrast, existing tactile sensors for robotic applications are inferior, lacking accurate force decoupling and proper spatial resolution at the same time. Here, we present a soft tactile sensor with self-decoupling and super-resolution abilities by designing a sinusoidally magnetized flexible film (with the thickness ~0.5 millimeters), whose deformation can be detected by a Hall sensor according to the change of magnetic flux densities under external forces. The sensor can accurately measure the normal force and the shear force (demonstrated in one dimension) with a single unit and achieve a 60-fold super-resolved accuracy enhanced by deep learning. By mounting our sensor at the fingertip of a robotic gripper, we show that robots can accomplish challenging tasks such as stably grasping fragile objects under external disturbance and threading a needle via teleoperation. This research provides new insight into tactile sensor design and could be beneficial to various applications in robotics field, such as adaptive grasping, dexterous manipulation, and human-robot interaction.Soft robotics has applications in myriad fields from assistive wearables to autonomous exploration. Now, the portability and the performance of many devices are limited by their associated pneumatic energy source, requiring either large, heavy pressure vessels or noisy, inefficient air pumps. Here, we present a lightweight, flexible, electro-pneumatic pump (EPP), which can silently control volume and pressure, enabling portable, local energy provision for soft robots, overcoming the limitations of existing pneumatic power sources. The EPP is actuated using dielectric fluid-amplified electrostatic zipping, and the device presented here can exert pressures up to 2.34 kilopascals and deliver volumetric flow rates up to 161 milliliters per minute and under 0.5 watts of power, despite only having a thickness of 1.1 millimeters and weight of 5.3 grams. An EPP was able to drive a typical soft robotic actuator to achieve a maximum contraction change of 32.40% and actuation velocity of 54.43% per second. We highlight the versatility of this technology by presenting three EPP-driven embodiments an antagonistic mechanism, an arm-flexing wearable robotic device, and a continuous-pumping system. This work shows the wide applicability of the EPP to enable advanced wearable assistive devices and lightweight, mobile, multifunctional robots.Future robotic systems will be pervasive technologies operating autonomously in unknown spaces that are shared with humans. Such complex interactions make it compulsory for them to be lightweight, soft, and efficient in a way to guarantee safety, robustness, and long-term operation. Such a set of qualities can be achieved using soft multipurpose systems that combine, integrate, and commute between conventional electromechanical and fluidic drives, as well as harvest energy during inactive actuation phases for increased energy efficiency. Here, we present an electrostatic actuator made of thin films and liquid dielectrics combined with rigid polymeric stiffening elements to form a circular electrostatic bellow muscle (EBM) unit capable of out-of-plane contraction. These units are easy to manufacture and can be arranged in arrays and stacks, which can be used as a contractile artificial muscle, as a pump for fluid-driven soft robots, or as an energy harvester. As an artificial muscle, EBMs of 20 to 40 millimeters in diameter can exert forces of up to 6 newtons, lift loads over a hundred times their own weight, and reach contractions of over 40% with strain rates over 1200% per second, with a bandwidth over 10 hertz.