Merging Psychological Mapping and native expertise to enhance food surroundings throughout local Nz

From Selfless
Jump to navigation Jump to search

Sprinkler irrigation with freshwater was a favorable approach for reducing the uptake of metal(loid)s from soils and the metal(loid) concentrations in aboveground parts. Our study highlights the possibility of reducing vegetable metal(loid) risks in contaminated farmlands via a combined approach of coupling the short-term decrease in their levels in irrigation water with vegetable species selection.To date, numerous studies have explored recycling of lithium, nickel, cobalt, and manganese (NCM) from spent lithium-ion batteries (LIBs). Nevertheless, the leaching and efficient separation of the precious metals from NCM active cathode material via an environmentally benign and economical process is still challenging. Therefore, in this research, we present a novel and energy an efficient route through which to leach valuable metals, for example, lithium (Li), nickel (Ni), cobalt (Co), and manganese (Mn) from the NCM cathode material of the waste LIBs using water-containing waste chlorinated polyvinyl chloride (CPVC) or polyvinyl chloride (PVC) in a batch reactor. Parameters such as temperature, time, liquid-solid, and mass ratios on the extraction efficiencies of Li, Ni, Co, and Mn were carefully examined. The outcomes show that CPVC performed better than PVC for the extraction of valuable metals from NCM material, and this was attributed to its high Cl contents. The maximum extraction efficiencies of Li, Ni, Co, and Mn (99.15%, 98.10%, 99.30%, and 100%, respectively) were achieved under optimized reaction conditions a temperature of 290 °C, reaction time of 1 h, a liquid-solid ratio 601 mL/g and solid to solid mass ratio of 13. The apparent activation energies (Ea) for Li, Ni, Co, and Mn were computed to be (24.42, 28.85, 29.67, and 28.79) kJ/mol. The results obtained in this work, indicated that it may contribute to efforts aiming to reduce industrial chemical consumption and increase sustainability in waste management technique.Plastic pollution is prevalent worldwide and has been highlighted as an issue of global concern due to its harmful impacts on wildlife. The extent and mechanism by which plastic pollution effects organisms is poorly understood, especially for microplastics. One proposed mechanism by which plastics may exert a harmful effect is through the leaching of additives. To determine the risk to wildlife, the chemical identity and exposure to additives must be established. However, there are few reports with disparate experimental approaches. In contrast, a breadth of knowledge on additive release from plastics is held within the food, pharmaceutical and medical, construction, and waste management industries. This includes standardised methods to perform migration, extraction, and leaching studies. This review provides an overview of the approaches and methods used to characterise additives and their leaching behaviour from plastic pollution. The limitations of these methods are highlighted and compared with industry standardised approaches. Furthermore, an overview of the analytical strategies for the identification and quantification of additives is presented. This work provides a basis for refining current leaching approaches and analytical methods with a view towards understanding the risk of plastic pollution.Aflatoxin B1 is the most toxic mycotoxin and has strong carcinogenicity. In this study, coumarin was employed as the sole carbon source to isolate the microorganisms that had AFB1 detoxification activity. Among106 strains isolated from fermented foods, one potential strain was identified as Lactobacillus plantarum based on 16S rDNA sequence. Removal ratio of AFB1 was 89.5%, inhibitory ratio to A. flavus growth was 42.8% and inhibitory ratio to A. flavus spores growth was as high as 100%. Coumarin utilization indicated that the AFB1 could be decomposed by the strain. The strong antifungal ability against A. flavus growth and spores growth revealed that AFB1 secretion could be highly inhibited by the strain. In addition, High Performance Liquid Chromatography analysis indicated that fermentation supernatant of the strain could degrade AFB1. Scanning Electron Microscopy and Transmission Electron Microscopy indicated that the strain had a strong resistance to AFB1 and had ability to bind AFB1 on the strain surface. Possible detoxification pathway to AFB1 was proposed. Therefore, the strain with high antifungal, antimycotoxigenic abilities might have great potential and immense value in detoxifying AFB1. The use of the strain might be a promising biocontrol strategy to detoxify AFB1.The presence of ciprofloxacin (CIP) in natural water may cause potential threats to the environment. Adsorption is a convenient and efficient method to remove CIP from aqueous solution. Bayberry tannin (BT), a natural polyphenol, has been utilized in the synthesis of tannin foam (TF) due to its abundant polyphenolic hydroxyls to chelate with metal ions. The obtained TF was subsequently immobilized with Fe3+ via a facile chelative adsorption to fabricate functional tannin foam (TF-Fe), which was highly porous, with a porosity of 78.93%. The Fe species in the TF-Fe featured good dispersity, which were active for chelative adsorption of CIP. The adsorption of CIP on the TF-Fe was a pH-dependent process. At the optimized pH of 7.0, the TF-Fe provided the adsorption capacity of 91.8 mg g-1. When applied in removal of CIP at the low concentration of 2.0 µg mL-1, a high removal efficiency of 96.60% was still obtained, which was superior to commercial activated carbon (28.78%). The adsorption kinetics were well fitted by the pseudo-second-order rate model while the adsorption isotherms were well described by the Langmuir model. The TF-Fe was capable of recycling, which still maintained a high removal efficiency of 92.25% in the 5th cycle.Pernicious effects of plastic particles, emergent contaminants worldwide, have been described in different species. Pirfenidone In teleost species, alterations of immune function after exposure to nanoplastics (NPs) have been reported, but the interaction with cortisol - hypothalamic-pituitary-adrenal (HPI) axis has not yet been explored. Furthermore, the role of dissolved organic matter on the effects of NPs is poorly known. Thus, the aims of this research were to assess if polystyrene NPs (PSNPs) acted as a stressor on juvenile European seabass (Dicentrarchus labrax), interfering with the immune response, as well as to elucidate if humic acids (HA) modulated the potential effects of PSNPs. A short-term exposure to PSNPs and HA elicited an immuno-modulatory response, with an activation of steroidogenic stress-related pathways. An upregulation of anti-inflammatory cytokine (il10, tgfb) and stress-related (mc2r, gr1) transcripts were observed after exposure to HA and PSNPs both individually and in co-exposure. No notable alteration of inflammatory markers was consistently found, which may reflect a protective anti-inflammatory effect of HA in the presence of PSNPs. Nevertheless, there seems to be a more complex interaction between both components. Overall, data show that understanding the interaction of NPs with dissolved organic substances is key to deciphering their environmental risks.Flue gas desulfurization-derived wastewater sludge (FGD-WWS) has been produced increasingly in China and India etc., and its content of heavy metals (HMs) including Cd, Cr, Cu, Hg, Ni and Zn seriously exceeds the limits allowed. Developing the suitable disposal of FGD-WWS is therefore significantly important and necessary. The novel process of electrokinetic treatment combined with chemical pretreatment of HMs in FGD-WWS were proposed here to improve the removal efficiency. Results indicate that the effects of different pretreatment agents (citric acid (CA), ammonia, tetrasodium of N, N-bis (carboxymethyl) glutamic acid (GLDA), and rhamnolipid) on the ET of HMs were different. To investigate the mechanism of combined process, the transformation potential (TP), exchange potential (EP) and removal potential (RP) were calculated. Correlation analysis shows the correlation between TP and RP was higher than that between EP and RP, indicating that the removal efficiency is mainly affected by the fraction transformation of HMs. Electric field, pH and pretreatment agents are main factors causing fraction transformation and affecting TP. Focusing on fraction transformation is an efficient way to improve further the removal efficiency. The work is promisingly valuable for developing the technology of treating FGD-WWS.Synthetic musks (SMs), a class of organic compounds added to various personal care products (PCPs) to enhance aroma, are increasingly released into the environment and become one emerging contaminants of concern in India. Some SMs like Galaxolide, Tonalide and Musk Ketone (MK) are lipophilic and found ubiquitously in the environment, posing health and ecological risks, especially affecting aquatic organisms. Hence, monitoring the synthetic musks contamination in these rivers become environmentally inevitable. Consequently, three major rivers, the Kaveri (Cauvery), Vellar and Thamirabarani Rivers in Tamil Nadu, India, were investigated to understand the occurrence and fate of SMs. The concentration of Galaxolide, Tonalide and MK in surface water ranged as not detected (ND)-198, ND-77 and ND-62 ng/L, respectively. The levels of SMs in the Kaveri River were comparable with Vellar and Thamirabarani Rivers; however, the detection frequency was low in Thamirabarani river. Fish samples from the Kaveri river had higher concentrations of SMs (galaxolide 36-350 ng/g > MK 2-33 ng/g > Tonalide 1-9 ng/g ww (wet weight)) than in the Vellar River. Based on Hazard Quotient, SMs pose no risks to freshwater systems and the resident organisms in this study. In India, the dry season starts from March to July (35-42 °C) and wet season starts from November to February (25-35 °C). link2 Bioconcentration factor (BCF) values for Galaxolide were found higher during the wet season and lower during the dry season, whereas it is reverse for Tonalide. Among fish Gebilion catla may be a good indicator species for SMs, despite the seasons, it accumulates more. This is the first study of SMs in surface water and fish from the rivers in India.The environmental biodegradability profile of graphene related materials (GRMs) is important to know in order to predict whether these materials will accumulate in soil or will be transformed by primary decomposers. In this study, few-layer graphene (FLG) was exposed to living and devitalized axenic cultures of two white-rot basidiomycetes (Bjerkandera adusta and Phanerochaete chrysosporium) and one soil saprotrophic ascomycete (Morchella esculenta) with or without lignin, for a period of four months. link3 Over this time, the increase of fungal biomass and presence of H2O2 and oxidizing enzymes [laccase/peroxidase and lignin peroxidase (LiP)] in growth media was assessed by gravimetric and spectrophotometric measurements, respectively. Raman spectroscopy and transmission electron microscopy (TEM) were used to compare the structure of FLG before and after incubation. All of the test fungi decreased pH in growth media and released H2O2 and laccase/peroxidase, but only basidiomycetes released LiP. Independent of growth media composition all fungi were found to be capable to oxidize FLG to a graphene oxide-like material, including M.