Multi purpose biomaterials in which regulate air amounts inside the tumour microenvironment

From Selfless
Jump to navigation Jump to search

The present study aims to use Ankistrodesmus sp. EHY to develop a viable and economic lipid production strategy using recycling of harvested microalgal effluent. In comparison to the control, the highest lipid content (52.4 %) and productivity (250.72 mg L-1 d-1) were achieved when 40 % recycled medium was used. Consistent with the trend of lipid accumulation, the six key lipogenetic genes were upregulated, as well as reactive oxygen species (ROS), glutathione (GSH) and genes encoding antioxidant enzymes during cultivation in recycled medium. Moreover, the consumption of dissolved organic carbon (DOC) and the increased humic acid (HA) in the recycled medium might also be associated with lipid biosynthesis. The biodiesel parameters of alga biomass-derived lipids were fitted to the standard of commercial biodiesel. In conclusion, this study offers an economically viable strategy for microalgal biofuel production and wastewater treatment using recycling of harvested microalgal effluent.Liquid hydrolysate (LH) derived from the microwave hydrothermal pretreatment (MHP) of wheat straw (WS) was anaerobically digested together with the solid residual to promote the overall energy profit. Different MHP temperatures (90, 120, 150, 180 °C) and retention times (10, 20, 40 min) were investigated. Increased MHP intensity generated plenty of VFAs (mainly acetate) and phenols in the LH, implying the double-side effect of LH on AD. The highest methane production of 227.92 mL CH4·gVS-1 Raw was obtained with MHP at 120 °C for 10 min, 21.53 % higher than the control. While, MHP at 180 °C for 40 min exhibited 29.02 % lower methane production (113.13 mL CH4·gVS-1 Raw) and 115.86 % longer lag phase (3.13 days) than the control. Butyrate fermentation endowed the treatment groups of 180 °C with resilience from the overload and inhibition. Methanosarcina was largely enriched by the abundant acetate in LH on the early stage of anaerobic digestion (AD), especially when with high MHP intensity. Increased abundance of Methanosaeta and Methanobacterium played a crucial role in maintaining methane production at the middle and later stage. The high number of species and evenness in methanogens community were beneficial for the startup of batch AD. Although negative net energy was obtained, the lower ratio of energy input and output compared with the most researches using the solid residual after MHP as the sole substrate for AD demonstrated the contribution of LH to the overall energy profit.Co-coagulation flotation (CCF) is a novel flotation technology that renders more efficient algal removal compared to traditional mechanical coagulation flotation (MCF) due to a short residence time ( 1.7). In contrast, the Haarhoff and Edzwald's extended equation was more suitable for calculating the rising velocity of irregular flocs with small fractal dimension. This study provides new insights into the mechanisms of the enhanced algal removal by CCF and lays foundation for developing cost-efficient algal mitigation processes.It is unusual, and can be difficult, for scientists to reflect in their publications on any limitations their research had. This is a consequence of the extreme pressure that scientists are under to 'publish or perish'. The inevitable consequence is that much published research is not as good as it could, and should, be, leading to the current 'reproducibility crisis'. Approaches to address this crisis are required. Our suggestion is to include a 'Limitations' section in all scientific papers. Evidence is provided showing that such a section must be mandatory. Adding a 'Limitations' section to scientific papers would greatly increase honesty, openness and transparency, to the considerable benefit of both the scientific community and society in general. This suggestion is applicable to all scientific disciplines. Finally, we apologise if our suggestion has already been made by others.Wastewater treatment plants (WWTPs) with anaerobic digestion of biosolids produce an ammonia-rich sidestream out of which nitrogen can be recovered through air stripping. Recovered ammonia can be used to produce ammonium sulfate (AS) for agricultural use, enabling the circular return of nitrogen as fertilizer to the food system. We investigate the cost and life cycle environmental impact of recovering ammonia from the sidestream of WWTPs for conversion to AS and compare it to AS production from the Haber Bosch process. We perform life cycle assessment (LCA) to investigate the environmental impact of AS fertilizer production by air-stripping ammonia from WWTP sidestreams at varying sidestream nitrogen concentrations. Techno-economic analysis (TEA) is performed to assess the break-even selling price of sidestream AS production at a WWTP in the City of Philadelphia. Greenhouse gas emissions for air-stripping technology range between 0.2 and 0.5 kg CO2e/kg AS, about six times lower than the hydrocarbon-based Haber-Bosch process, estimated at 2.5 kg CO2e/kg AS. Further reduction of greenhouse gas emissions is feasible by replacing fossil-based energy use in air-stripping process (82-98 % of net energy demand) with renewable sources. Also, a significant reduction in mineral depletion and improvement in human and ecosystem health are observed for the air-stripping approach. Furthermore, the break-even selling price for installing sidestream-based AS production at the Philadelphia's WWTP, considering capital and operating costs, is estimated at $0.046/kg AS (100 %), which is 92 % lower than the 2014 estimate of AS's average selling price at farms in the United States. We conclude that even with varying ammonia concentrations and high sidestream volume, air-stripping technology offers an environmentally and economically favorable option for implementing nitrogen recovery and simultaneous production of AS at WWTPs.Soils of Mediterranean forests can be severely degraded due to wildfire. However, post-fire management techniques, such as soil mulching with vegetal residues, can limit degradation and increase functionality of burned soils. The effects of post-fire mulching on soil functionality have been little studied in Mediterranean forests, and it is still unclear whether the application of straw or wood residues is beneficial. This study explores the changes in important soil chemical and biochemical properties in a pine forest of Central Eastern Spain after a wildfire and post-fire mulching with straw or wood chips. Only basal soil respiration (BSR), dehydrogenase activity (DHA), pH and water field capacity (WFC) significantly changed after the fire and mulching. In contrast, the other enzymatic activities - urease (UA), alkaline phosphatase (Alk-PA) and β-glucosidase (BGA), - total organic carbon (TOC) and electrical conductivity (EC) were not influenced by these soil disturbances. Time from fire and soil conditionsof fragile Mediterranean soils, indicating its effectiveness at preserving soil functionality in areas affected by forest fires.The carbon transfers caused by inter-provincial commodity flows account for about 35 % of the total carbon emissions in China. There are great differences between the production-side and consumption-side carbon emissions for each province. Therefore, under the constraints of carbon peak and carbon neutralization, bilateral carbon emissions management is crucial to mitigate carbon emissions and the driving forces of bilateral carbon emissions must first be identified. Based on China's inter-provincial input-output data and carbon emissions data released by China Emissions Accounts and Datasets (CEADs), this paper uses a multi-regional input-output model (MRIO) to calculate the bilateral carbon emissions in 30 China's provinces from 2007 to 2017 and then apply structural decomposition analysis (SDA) to measure the influencing factors of these emissions. We also use counterfactual analysis to investigate the adjustment of provincial responsibilities for carbon emissions. The results show that the provinces in central and northern China undertake major net carbon inflows from other provinces in the eastern and southern coastal region. According to the results of SDA, the technological effect is an important factor in curbing the bilateral carbon emissions and the demand effect promotes the bilateral carbon emissions, but their contribution rates show a downward trend. By contrast, the variation in structural effect has significantly restrictive effects on the bilateral carbon emissions. Based on the provincial contribution to emissions mitigation, the adjusted consumption-side carbon emission embodies the principle of "more emission reduction, more compensation". We suggest implementing differentiated bilateral carbon emission management, taking the adjusted consumption-side carbon emission as the evaluation standard, and promoting inter-provincial carbon compensation.Pyrethroids, a class of commonly used insecticides, are frequently detected in aquatic environments, including estuaries. The influence that salinity has on organism physiology and the partitioning of hydrophobic chemicals, such as pyrethroids, has driven interest in how toxicity changes in saltwater compared to freshwater. Early life exposures in fish to pyrethroids cause toxicity at environmentally relevant concentrations, which can alter behavior. Behavior is a highly sensitive endpoint that influences overall organism fitness and can be used to detect toxicity of environmentally relevant concentrations of aquatic pollutants. PI3K inhibitor Inland Silversides (Menidia beryllina), a commonly used euryhaline model fish species, were exposed from 5 days post fertilization (~1-day pre-hatch) for 96 h to six pyrethroids bifenthrin, cyfluthrin, cyhalothrin, cypermethrin, esfenvalerate and permethrin. Exposures were conducted at three salinities relevant to brackish, estuarine habitat (0.5, 2, and 6 PSU) and across 3 concentrations, either 0.1, 1, 10, and/or 100 ng/L, plus a control. After exposure, Inland Silversides underwent a behavioral assay in which larval fish were subjected to a dark and light cycle stimuli to determine behavioral toxicity. Assessment of total distanced moved and thigmotaxis (wall hugging), used to measure hyper/hypoactivity and anxiety like behavior, respectively, demonstrate that even at the lowest concentration of 0.1 ng/L pyrethroids can induce behavioral changes at all salinities. We found that toxicity decreased as salinity increased for all pyrethroids except permethrin. Additionally, we found evidence to suggest that the relationship between log KOW and thigmotaxis is altered between the lower and highest salinities.The novel biological nitrogen removal process has been extensively studied for its high nitrogen removal efficiency, energy efficiency, and greenness. A successful novel biological nitrogen removal process has a stable microecological equilibrium and benign interactions between the various functional bacteria. However, changes in the external environment can easily disrupt the dynamic balance of the microecology and affect the activity of functional bacteria in the novel biological nitrogen removal process. Therefore, this review focuses on the microecology in existing the novel biological nitrogen removal process, including the growth characteristics of functional microorganisms and their interactions, together with the effects of different influencing factors on the evolution of microbial communities. This provides ideas for achieving a stable dynamic balance of the microecology in a novel biological nitrogen removal process. Furthermore, to investigate deeply the mechanisms of microbial interactions in novel biological nitrogen removal process, this review also focuses on the influence of quorum sensing (QS) systems on nitrogen removal microbes, regulated by which bacteria secrete acyl homoserine lactones (AHLs) as signaling molecules to regulate microbial ecology in the novel biological nitrogen removal process.