Obesity Administration and Persistent Kidney Ailment

From Selfless
Jump to navigation Jump to search

We do experiments on public data and lab medical data. The results show that our model consistently achieves remarkable improvements to the state-of-the-art method.The graph neural network (GNN) based approach has been successfully applied to session-based recommendation tasks. However, in the face of complex and changing real-world situations, the existing session recommendation algorithms do not fully consider the context information in user decision-making; furthermore, the importance of context information for the behavior model has been widely recognized. Based on this, this paper presents a session recommendation model based on context-aware and gated graph neural networks (CA-GGNNs). First, this paper presents the session sequence as data of graph structure. Second, the embedding vector representation of each item in the session graph is obtained by using the gated graph neural network (GGNN). In this paper, the GRU in GGNN is expanded to replace the input matrix and the state matrix in the conventional GRU with input context captured in the session (e.g., time, location, and holiday) and interval context (representing the proportion of the total session time of each item in the session). Finally, a soft attention mechanism is used to capture users' interests and preferences, and a recommendation list is given. The CA-GGNN model combines session sequence information with context information at each time. The results on the open Yoochoose and Diginetica datasets show that the model has significantly improved compared with the latest session recommendation methods.With the development of computer technology, video description, which combines the key technologies in the field of natural language processing and computer vision, has attracted more and more researchers' attention. Among them, how to objectively and efficiently describe high-speed and detailed sports videos is the key to the development of the video description field. In view of the problems of sentence errors and loss of visual information in the generation of the video description text due to the lack of language learning information in the existing video description methods, a multihead model combining the long-term and short-term memory network and attention mechanism is proposed for the intelligent description of the volleyball video. Through the introduction of the attention mechanism, the model pays much attention to the significant areas in the video when generating sentences. Through the comparative experiment with different models, the results show that the model with the attention mechanism can effectively solve the loss of visual information. Compared with the LSTM and base model, the multihead model proposed in this paper, which combines the long-term and short-term memory network and attention mechanism, has higher scores in all evaluation indexes and significantly improved the quality of the intelligent text description of the volleyball video.As one of the oldest languages in the world, Chinese has a long cultural history and unique language charm. The multilayer self-organizing neural network and data mining techniques have been widely used and can achieve high-precision prediction in different fields. compound 3i cost However, they are hardly applied to Chinese language feature analysis. In order to accurately analyze the characteristics of Chinese language, this paper uses the multilayer self-organizing neural network and the corresponding data mining technology for feature recognition and then compared it with other different types of neural network algorithms. The results show that the multilayer self-organizing neural network can make the accuracy, recall, and F1 score of feature recognition reach 68.69%, 80.21%, and 70.19%, respectively, when there are many samples. Under the influence of strong noise, it keeps high efficiency of feature analysis. This shows that the multilayer self-organizing neural network has superior performance and can provide strong support for Chinese language feature analysis.This paper proposes a new method to make short-term predictions for the three kinds of primary energy consumption of power, lighting, and ventilated air conditioning in the metro station. First, the paper extracts the five main factors influencing metro station energy consumption through the kernel principal component analysis (KPCA). Second, improved genetic-ant colony optimization (G-ACO) was fused into the BP neural network to train and optimize the connection weights and thresholds between each BP neural network layer. The paper then builds a G-ACO-BP neural model to make short-term predictions about different energy consumption in the metro station to predict the energy consumed by power, lighting, and ventilated air conditioning. The experimental results showed that the G-ACO-BP neural model could give a more accurate and effective prediction for the main energy consumption in a metro station.Surveillance remains an important research area, and it has many applications. Smart surveillance requires a high level of accuracy even when persons are uncooperative. Gait Recognition is the study of recognizing people by the way they walk even when they are unwilling to cooperate. It is another form of a behavioral biometric system in which unique attributes of an individual's gait are analyzed to determine their identity. On the other hand, one of the big limitations of the gait recognition system is uncooperative environments in which both gallery and probe sets are made under different and unknown walking conditions. In order to tackle this problem, we propose a deep learning-based method that is trained on individuals with the normal walking condition, and to deal with an uncooperative environment and recognize the individual with any dynamic walking conditions, a cycle consistent generative adversarial network is used. This method translates a GEI disturbed from different covariate factors to a normal GEI. It works like unsupervised learning, and during its training, a GEI disrupts from different covariate factors of each individual and acts as a source domain while the normal walking conditions of individuals are our target domain to which translation is required. The cycle consistent GANs automatically find an individual pair with the help of the Cycle Loss function and generate the required GEI, which is tested by the CNN model to predict the person ID. The proposed system is evaluated over a publicly available data set named CASIA-B, and it achieved excellent results. Moreover, this system can be implemented in sensitive areas, like banks, seminar halls (events), airports, embassies, shopping malls, police stations, military areas, and other public service areas for security purposes.At present, the development speed of international trade cannot catch up with the economic development speed, and the insufficient development speed of international trade will directly affect the rapid development of national economy. In order to solve the problem of international trade, the overall optimal scheduling of trade vehicles and the optimal planning of trade transportation path are very important to improve enterprise services, reduce enterprise costs, increase enterprise benefits, and enhance enterprise competitiveness. The second development of the program is based on the programming interface provided by Baidu map. This paper proposes a neural network algorithm for genetic optimization of multiple mutations, which overcomes the shortcoming of traditional genetic algorithm population "ten" character distribution by mixing multiple coding methods, and enhances the local search ability of genetic algorithm by introducing a new large-mutation small-range search population. The example application shows that the optimization method can realize the optimization of international trade path under real road conditions and greatly improve the work efficiency of actual trade.Many methods have been developed to derive respiration signals from electrocardiograms (ECGs). However, traditional methods have two main issues (1) focusing on certain specific morphological characteristics and (2) not considering the nonlinear relationship between ECGs and respiration. In this paper, an improved ECG-derived respiration (EDR) based on empirical wavelet transform (EWT) and kernel principal component analysis (KPCA) is proposed. To tackle the first problem, EWT is introduced to decompose the ECG signal to extract the low-frequency part. To tackle the second issue, KPCA and preimaging are introduced to capture the nonlinear relationship between ECGs and respiration. The parameter selection of the radial basis function kernel in KPCA is also improved, ensuring accuracy and a reduction in computational cost. The correlation coefficient and amplitude square coherence coefficient are used as metrics to carry out quantitative and qualitative comparisons with three traditional EDR algorithms. The results show that the proposed method performs better than the traditional EDR algorithms in obtaining single-lead-EDR signals.Timely detection and treatment of possible incipient faults in satellites will effectively reduce the damage and harm they could cause. Although much work has been done concerning fault detection problems, the related questions about satellite incipient faults are little addressed. In this paper, a new satellite incipient fault detection method was proposed by combining the ideas of deviation in unsupervised fault detection methods and classification in supervised fault detection methods. First, the proposed method uses dynamic linear discriminant analysis (LDA) to find an optimal projection vector that separates the in-orbit data from the normal historical data as much as possible. Second, under the assumption that the parameters obey a multidimensional Gaussian distribution, it applies the normal historical data and the optimal projection vector to build a normal model. Finally, it employs the noncentral F-distribution to test whether a fault has occurred. The proposed method was validated using a numerical simulation case and a real satellite fault case. The results show that the method proposed in this paper is more effective at detecting incipient faults than traditional methods.Development of multiple agents has a significant impact on the cancer diagnosis and therapy. Several fluorescent dyes including near-infrared (NIR) fluorescent agents have been already well studied in the field of photodynamic therapy (PDT). In the present study, we reported a novel fluorescent dye could obviously inhibit cancer cell proliferation with slight toxic effects on the biological organism. Furthermore, it displayed selective staining on cancer cells, particularly on cancer stem cells (CSCs), rather than normal cells. Mechanically, this dye preferred to invading mitochondria of cancer cells and inducing overwhelming reactive oxygen species (ROS) production. The in vivo experiments further demonstrated that this dye could image cancer cells and even CSCs in a short-time intratumor injection manner using a zebrafish model and subsequently inhibit cancer cell proliferation after a relatively long-time drug exposure. Taken together, the future development of this agent will promise to make an essential contribution to the cancer diagnosis and therapeutics.