Protected immunomodulatory transcriptional sites underlie antipsychoticinduced fat gain

From Selfless
Jump to navigation Jump to search

Statins, a class of commonly prescribed cholesterol‑lowering medications, have been revealed to influence the risk of multiple types of cancer. However, the antitumor effects of statins on pancreatic cancer and their differential efficacy among a variety of statins are not currently well‑defined. The aim of the present study was therefore to identify and compare the genes and related biological pathways that were affected by each individual statin on pancreatic cancer. Two human pancreatic cancer cell lines, MiaPaCa2 and PANC1, were exposed to three statins, lovastatin, fluvastatin and simvastatin. The inhibitory effect of statins on pancreatic cancer cell proliferation was first validated. Next, RNA‑seq analysis was used to determine the gene expression alterations in either low (2 µM) or high (20 µM) statin concentration‑treated cancer cells. Marked differences in gene transcription profiles of both pancreatic cancer cell lines exposed to high concentration statins were observed. Notably, the high concentration statins significantly suppressed core‑gene CCNA2‑associated cell cycle and DNA replication pathways and upregulated genes involved in ribosome and autophagy pathways. However, the low concentration statin‑induced gene expression alterations were only detected in MiaPaCa2 cells. In conclusion, a marked difference in the intra and inter cell‑type performance of pancreatic cancer cells exposed to a variety of statins at low or high concentrations was reported herein, which may provide insights for the potential clinical use of statins in future pancreatic cancer therapeutics.Osteosarcoma is the most common primary malignant bone tumor in children and adolescents and its long‑term survival rate has stagnated in the past decades. Previous studies have shown that tumors in the G2/M phase are more sensitive to radiotherapy. The proto‑oncogene c‑myc is a transformed member of the myc family and c‑myc‑interacting zinc finger protein‑1 (Miz‑1) is a poly‑Cys2His2 zinc finger (ZF) activator of cell cycle regulator genes, such as the cyclin‑dependent kinase inhibitor p21. C‑myc can repress the expression of p21 by binding to Miz‑1 and abolishing the interaction between Miz‑1 and its co‑activators, which induces G2/M phase arrest. Therefore, the present study investigated the radiosensitizing effects of the c‑myc gene and the sensitizing apoptosis pathway, aiming to identify a more effective combination radiotherapy treatment for osteosarcoma. The present study demonstrated that the c‑myc gene was overexpressed in osteosarcoma cells compared to osteoblasts. Following inhibition of c‑myc gene expression in osteosarcoma cells, tumor proliferation was significantly hindered after inducing G2/M phase arrest via regulating G2/M phase‑associated proteins. Additionally, it was revealed that inhibiting c‑myc gene expression combined with radiotherapy could significantly increase the apoptosis rate of osteosarcoma cells via the mitochondrial signaling pathway. In summary, the present study verified the radiosensitizing effects of c‑myc gene knockdown‑induced G2/M phase arrest, which was achieved by intrinsic stimuli through the mitochondrial signaling pathway.Poncirus fructus (PF) is a phytochemical compound extracted from the dry, immature fruits of Poncirus trifoliate. PF is traditionally used to treat gastrointestinal disorders, allergies, and inflammatory disease. In East Asia, PF is also known for its anticancer properties. There are numerous reports on the anticancer and anti‑inflammatory effects of PF in a wide range of cancers and gastrointestinal diseases, respectively. However, the role of PF in inducing apoptosis and suppressing the invasiveness of hepatocellular carcinoma (HCC) remains unclear. This study investigated the ability of PF to induce apoptosis and inhibit the invasiveness and migratory ability of HCC cell lines (Hep3B and Huh7). Wound healing, Transwell migration and invasion, and colony‑formation assays, as well as flow cytometry, were used to analyze cell proliferation, migration, invasion, and apoptosis. click here Epithelial‑mesenchymal transition (EMT)‑related and apoptotic proteins were assessed by western blotting. The mitochondrial membrane potential of the Hep3B and Huh7 cells was observed with tetramethylrhodamine ethyl ester. The reactive oxygen species (ROS) level was determined by dihydroethidium (DHE) staining. PF treatment significantly decreased the proliferation of Hep3B and Huh7 cells in a dose‑dependent manner, reduced the mitochondrial membrane potential, increased ROS levels, decreased the protein levels of Bcl‑2, and increased the protein levels of Bax and cleaved caspase‑3 and 9, suggesting that PF mediated HCC apoptosis via a mitochondrial pathway. Our findings showed that PF prevented HCC cell migration and invasion by inhibiting the EMT process and downregulating MMP‑2 and MMP‑9 activities. The results suggest the potential anticancer effects of PF by inhibiting proliferation, inducing apoptosis, and reducing the invasion and migration of HCC cells.Thyroid cancer (TC) is one of the most common malignancies with a high mortality rate. Long non‑coding RNA CCAT2 (CCAT2) participates in the occurrence and development of certain human cancers; however, whether it is involved in TC remains unclear. Thus, the present study investigated the role of CCAT2 in TC and the underlying mechanism. CCAT2 expression in both TC tissues and cell lines was examined by reverse transcription‑quantitative PCR. CCAT2 expression was silenced in TC cell lines by a specific small interfering (si)RNA against CCAT2 (si‑CCAT2). The effects of CCAT2 silencing on TC cell proliferation were detected by CCK‑8 and colony formation assays. Cell cycle and apoptosis of the treated TC cells were assessed by flow cytometry. Wound healing and Transwell assays were performed to detect the effects of si‑CCAT2 on the migration and invasion of TC cells. Apoptosis‑related proteins and Wnt/β‑catenin cascade‑associated agents were examined by western blotting. The interaction between CCAT2 and the Wnt/β‑catenin pathway in the transfected cells was detected by performing a dual‑luciferase reporter assay.