Research advancement within decellularized extracellular matrixderived hydrogels

From Selfless
Jump to navigation Jump to search

However, there was a significant decrease in elongation and tensile strength because grain boundaries act as critical defects. Next, the annealing time was varied from 0.5 to 6 h for a better understanding of the effects of the annealing time. As a result, the maximum elongation (0.54 ± 0.03%) and tensile strength (589 ± 11 MPa) were obtained at 150 °C for 1 h. Annealing for 1 h was appropriate for sufficient defect reduction; however, excessive annealing for more than 1 h increased the degree of partial crystallization of the ITO thin films. The proposed annealing conditions and the corresponding mechanical properties provide guidelines for the optimum annealing process of ITO thin films and quantitative data for mechanical analysis to design mechanically robust flexible electronics.A combinatorial approach has served as a high-throughput strategy to identify compositional windows with optimized desired properties. Here, ZrCuAg thin-film metallic glasses were deposited by DC magnetron sputtering. see more For the purpose of using these coatings as biomedical surfaces, their durability in terms of mechanical and physicochemical properties as well as antibacterial properties were characterized. The effect of the chemical composition of thin films was studied. In particular, two key parameters were highlighted the atomic ratio of Zr/Cu (with three values of 65/35, 50/50, and 35/65) and the silver content (from 1 to 16 at. %). All thin films are XRD amorphous and exhibit a typical veinlike pattern, which is characteristic of metallic glasses. They also show a dense and smooth surface and a hydrophobic behavior. Mechanical properties are found to be deeply influenced by the Zr/Cu ratio and the atomic structure. Although a low Zr/Cu ratio and/or a high silver content is detrimental to corrosion behavior, it favors the bactericidal effect of thin films. For all Zr/Cu ratios, ZrCuAg thin-film metallic glasses with silver contents higher than 12 at % are fully bactericidal. For lower silver contents, the bactericidal effect progressively decreases, which paves the way for a biostatic behavior of these surfaces.Directional transport and manipulation of liquid substances have drawn wide attention owing to their crucial applications from microfluid to large-area water harvesting. Spontaneous oil directional transport, especially having the prospect of large-scale manufacturing, plays a huge role in marine oil cleanup, but is exposed to the limitations such as low efficiency and transport velocity. Here, we report a biomimetic porous nanofiber-based oil pump from cosolvent electrospinning, endowed with the parenchyma cellular structure of plants. These tightly packed and uniform nanoporous structures of nanofibers are capable of self-pumping oil upward with an ultrahigh pumping rate of 21.12 g g-1 h-1, which has been proposed as an explicit mechanism. Following oil directional transport, it can obtain an efficient oil collection of 127.52 g g-1. We anticipate that our designed oil pump will provide a versatile platform for spontaneous oil directional transport and collection with potential applications in the fields of laboratory-on-a-chip, microreaction devices, chemical engineering, and the petrochemical industry.U(VI) and Eu(III), as representative elements of the hexavalent actinide and trivalent lanthanides (always as a chemical analogue for trivalent actinide), respectively, have attracted more and more attentions due to the widespread use of nuclear energy. Much effort has been focused on developing versatile materials for their uptake from aqueous solution. For the first time, we report here UiO-66 and its mono- (UiO-66-COOH) and di-carboxyl (UiO-66-2COOH) functional derivatives as robust adsorbents for efficient U(VI) and Eu(III) removal. It is found that the introduction of carboxyl groups greatly reduces the surface charge of UiO-66, thus guaranteeing excellent adsorption capacity at low pH. At pH = 3, for example, the adsorption capacity of UiO-66-2COOH for U(VI) and Eu(III) is more than 100 and 60 mg/g, respectively, while almost no adsorption occurs for pristine UiO-66. At pH = 4, both UiO-66-COOH and UiO-66-2COOH show high performance on U(VI) and Eu(III) removal. UiO-66-COOH has adsorption capacities of 80 and 43 mg/g for U(VI) and Eu(III), respectively, while the values for UiO-66-2COOH reach 150 and 80 mg/g, respectively. Also, all these materials achieve adsorption equilibrium within 100 min. More importantly, combining the needs of practical applications and the characteristics of high stability, high porosity, and excellent adsorption performance of UiO-66-2COOH, dynamic adsorption column experiments were successfully conducted; ∼99% U(VI)/Eu(III) can be efficiently adsorbed, and >90% adsorbed U(VI)/Eu(III) can be re-collected with dilute nitric acid solution, even after four adsorption-desorption cycles. The findings of this work demonstrate the application potential of metal-organic framework materials to remove radionuclides from environmental samples or nuclear waste liquids.The quest for auxiliary plasmonic materials with lossless properties began in the past decade. In the current study, a unique plasmonic response is demonstrated from a stratified high refractive index (HRI)-graphene oxide (GO) and low refractive index (LRI)-polymethyl methacrylate (PMMA) multistack. Graphene oxide plasmon-coupled emission (GraPE) reveals the existence of strong surface states on the terminating layer of the photonic crystal (PC) framework. The chemical defects in GO thin film are conducive for unraveling plasmon hybridization within and across the multistack. We have achieved a unique assortment of metal-dielectric-metal (MDM) ensuing a zero-normal steering emission on account of solitons as well as directional GraPE. This has been theoretically established and experimentally demonstrated with a metal-free design. The angle-dependent reflectivity plots, electric field energy (EFI) profiles, and finite-difference time-domain (FDTD) analysis from the simulations strongly support plasmonic modes with giant Purcell factors (PFs). The architecture presented prospects for the replacement of metal-dependent MDM and surface plasmon-coupled emission (SPCE) technology with low cost, easy to fabricate, tunable soliton [graphene oxide plasmon-coupled soliton emission (GraSE)], and plasmon [GraPE] engineering for diverse biosensing applications. The superiority of the GraPE platform for achieving 1.95 pg mL-1 limit of detection of human IFN-γ is validated experimentally. A variety of nanoparticles encompassing metals, intermetallics, rare-earth, and low-dimensional carbon-plasmonic hybrids were used to comprehend PF and cavity hot-spot contribution resulting in 900-fold fluorescence emission enhancements on a lossless substrate, thereby opening the door to unique light-matter interactions for next-gen plasmonic and biomedical technologies.