Spinalcord pathology uncovered by simply MRI throughout upsetting spine injury

From Selfless
Jump to navigation Jump to search

Rapid advances in nanopore technologies for sequencing single long DNA and RNA molecules have led to substantial improvements in accuracy, read length and throughput. These breakthroughs have required extensive development of experimental and bioinformatics methods to fully exploit nanopore long reads for investigations of genomes, transcriptomes, epigenomes and epitranscriptomes. Nanopore sequencing is being applied in genome assembly, full-length transcript detection and base modification detection and in more specialized areas, such as rapid clinical diagnoses and outbreak surveillance. Many opportunities remain for improving data quality and analytical approaches through the development of new nanopores, base-calling methods and experimental protocols tailored to particular applications.Cardiometabolic diseases are frequently polygenic in architecture, comprising a large number of risk alleles with small effects spread across the genome1-3. Polygenic scores (PGS) aggregate these into a metric representing an individual's genetic predisposition to disease. PGS have shown promise for early risk prediction4-7 and there is an open question as to whether PGS can also be used to understand disease biology8. Here, we demonstrate that cardiometabolic disease PGS can be used to elucidate the proteins underlying disease pathogenesis. In 3,087 healthy individuals, we found that PGS for coronary artery disease, type 2 diabetes, chronic kidney disease and ischaemic stroke are associated with the levels of 49 plasma proteins. Associations were polygenic in architecture, largely independent of cis and trans protein quantitative trait loci and present for proteins without quantitative trait loci. Over a follow-up of 7.7 years, 28 of these proteins associated with future myocardial infarction or type 2 diabetes events, 16 of which were mediators between polygenic risk and incident disease. Twelve of these were druggable targets with therapeutic potential. Our results demonstrate the potential for PGS to uncover causal disease biology and targets with therapeutic potential, including those that may be missed by approaches utilizing information at a single locus.The Hedgehog (Hh) signalling pathway plays a critical role in regulating liver lipid metabolism and related diseases. However, the underlying mechanisms are poorly understood. Here, we show that the Hh signalling pathway induces a previously undefined long non-coding RNA (Hilnc, Hedgehog signalling-induced long non-coding RNA), which controls hepatic lipid metabolism. read more Mutation of the Gli-binding sites in the Hilnc promoter region (HilncBM/BM) decreases the expression of Hilnc in vitro and in vivo. HilncBM/BM and Hilnc-knockout mice are resistant to diet-induced obesity and hepatic steatosis through attenuation of the peroxisome proliferator-activated receptor signalling pathway, as Hilnc directly interacts with IGF2BP2 to enhance Pparγ mRNA stability. Furthermore, we identify a potential functional human homologue of Hilnc, h-Hilnc, which has a similar function in regulating cellular lipid metabolism. These findings uncover a critical role of the Hh-Hilnc-IGF2BP2 signalling axis in lipid metabolism and suggest a potential therapeutic target for the treatment of diet-induced hepatic steatosis.Substance use disorders commonly co-occur with one another and with other psychiatric disorders. They share common features including high impulsivity, negative affect, and lower executive function. We tested whether a common genetic factor undergirds liability to problematic alcohol use (PAU), problematic tobacco use (PTU), cannabis use disorder (CUD), and opioid use disorder (OUD) by applying genomic structural equation modeling to genome-wide association study summary statistics for individuals of European ancestry (Total N = 1,019,521; substance-specific Ns range 82,707-435,563) while adjusting for the genetics of substance use (Ns = 184,765-632,802). We also tested whether shared liability across SUDs is associated with behavioral constructs (risk-taking, executive function, neuroticism; Ns = 328,339-427,037) and non-substance use psychopathology (psychotic, compulsive, and early neurodevelopmental disorders). Shared genetic liability to PAU, PTU, CUD, and OUD was characterized by a unidimensional addiction risk factor (termed The Addiction-Risk-Factor, independent of substance use. OUD and CUD demonstrated the largest loadings, while problematic tobacco use showed the lowest loading. The Addiction-Risk-Factor was associated with risk-taking, neuroticism, executive function, and non-substance psychopathology, but retained specific variance before and after accounting for the genetics of substance use. Thus, a common genetic factor partly explains susceptibility for alcohol, tobacco, cannabis, and opioid use disorder. The Addiction-Risk-Factor has a unique genetic architecture that is not shared with normative substance use or non-substance psychopathology, suggesting that addiction is not the linear combination of substance use and psychopathology.Social dominance versus social submissiveness is a basic behavioral trait of social animals such as human beings and laboratory mice. The brain regions associated with this behavior have been intensely investigated, and early neuroimaging research on human subjects implies that the nucleus accumbens (NAc) might be involved in encoding social dominance. However, the underlying circuitry and synaptic mechanism are largely unknown. In this study, by introducing lesions to both NAc subregions, the shell and core, a causal relationship is established between social dominance and both NAc subregions. A further electrophysiology investigation on the circuitry of these two subregions revealed that the postsynaptic strength of excitatory synapses onto the medium spiny neurons that express the D1 dopamine receptors in the shell is negatively correlated, and the postsynaptic strength of excitatory synapses onto the medium spiny neurons that express the D2 dopamine receptors in the core is positively correlated, with social dominance. Correspondingly, a DREADD investigation revealed that the activities of these respective medium spiny neurons suppress and promote social dominance. These findings identify a neural substrate for social dominance, implying the potential for a therapeutic strategy for treating related psychiatric disorders.Information on neurodevelopmental effects of antenatal exposure to antipsychotics is limited to 10 studies, all examining children up to 5 years of age or less. The paper aimed to investigate the association between in utero exposure to antipsychotics and psychiatric outcomes in children using Danish nationwide registers. In total, 9011 liveborn singletons born 1998-2015 in Denmark whose mothers took antipsychotic medication before pregnancy were identified. Children whose mothers continued to take antipsychotics during pregnancy were compared with children of mothers who discontinued antipsychotics before pregnancy. As a negative control, paternal antipsychotic use in the same window was investigated. Hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated using Cox proportional hazards regression for the primary outcome of psychiatric disorders, as well for subcategories of psychiatric disorders. In total, 9.9% of children in the discontinuation group and 11.0% of children in the continuation group received a psychiatric disorder diagnosis during follow-up. The adjusted HR for psychiatric disorders among offspring in the continuation group compared to the discontinuation group was 1.10 (95% CI 0.93-1.30). For antipsychotic use in the fathers, the HR was 1.05 (95% CI 0.89-1.24). The study does not provide evidence of increased risk of psychiatric disorders among children of women who continue antipsychotic treatment during pregnancy. This was observed after accounting for the underlying risk conferred by maternal psychiatric disorders. This suggests women who need to continue antipsychotic medications during pregnancy can do so without adverse psychiatric outcomes for offspring.Derivatives of (2-aminopropyl)indole (API) and (2-aminopropyl)benzofuran (APB) are new psychoactive substances which produce stimulant effects in vivo. link2 (2-Aminopropyl)benzo[β]thiophene (APBT) is a novel sulfur-based analog of API and APB that has not been pharmacologically characterized. In the current study, we assessed the pharmacological effects of six APBT positional isomers in vitro, and three of these isomers (3-APBT, 5-APBT, and 6-APBT) were subjected to further investigations in vivo. Uptake inhibition and efflux assays in human transporter-transfected HEK293 cells and in rat brain synaptosomes revealed that APBTs inhibit monoamine reuptake and induce transporter-mediated substrate release. Despite being nonselective transporter releasers like MDMA, the APBT compounds failed to produce locomotor stimulation in C57BL/6J mice. Interestingly, 3-APBT, 5-APBT, and 6-APBT were full agonists at 5-HT2 receptor subtypes as determined by calcium mobilization assays and induced the head-twitch response in C57BL/6J mice, suggesting psychedelic-like activity. Compared to their APB counterparts, ABPT compounds demonstrated that replacing the oxygen atom with sulfur results in enhanced releasing potency at the serotonin transporter and more potent and efficacious activity at 5-HT2 receptors, which fundamentally changed the in vitro and in vivo profile of APBT isomers in the present studies. Overall, our data suggest that APBT isomers may exhibit psychedelic and/or entactogenic effects in humans, with minimal psychomotor stimulation. Whether this unique pharmacological profile of APBT isomers translates into potential therapeutic potential, for instance as candidates for drug-assisted psychotherapy, warrants further investigation.Social drinking is common, but it is unclear how moderate levels of alcohol influence decision making. Most prior studies have focused on adverse long-term effects on cognitive and executive function in people with alcohol use disorders (AUD). link3 Some studies have investigated the acute effects of alcohol on decision making in healthy people, but have predominantly used small samples and focused on a narrow selection of tasks related to personal decision making, e.g., delay or probability discounting. Here, we conducted a large (n = 264), preregistered randomized placebo-controlled study (RCT) using a parallel group design, to systematically assess the acute effects of alcohol on measures of decision making in both personal and social domains. We found a robust effect of a 0.6 g/kg dose of alcohol on both moral judgment and altruistic behavior, but no effects on several measures of risk taking or waiting impulsivity. These findings suggest that alcohol at low to moderate doses selectively moderates decision making in the social domain, and promotes utilitarian decisions over those dictated by rule-based ethical principles (deontological). This is consistent with existing theory that emphasizes the dual roles of shortsighted information processing and salient social cues in shaping decisions made under the influence of alcohol. A better understanding of these effects is important to understand altered social functioning during alcohol intoxication.