StraightenerTwo rewrite crossover processes along with diaminonaphthalenebased Schiff baselike ligands mononuclear things
Eukaryotes maintain cellular health through the engulfment and subsequent degradation of intracellular cargo using macroautophagy. The function of Atg23, despite being critical to the efficiency of this process, is unclear due to a lack of biochemical investigations and an absence of any structural information. In this study, we use a combination of in vitro and in vivo methods to show that Atg23 exists primarily as a homodimer, a conformation facilitated by a putative amphipathic helix. We utilize small-angle X-ray scattering to monitor the overall shape of Atg23, revealing that it contains an extended rod-like structure spanning approximately 320 Å. We also demonstrate that Atg23 interacts with membranes directly, primarily through electrostatic interactions, and that these interactions lead to vesicle tethering. Finally, mutation of the hydrophobic face of the putative amphipathic helix completely precludes dimer formation, leading to severely impaired subcellular localization, vesicle tethering, Atg9 binding, and autophagic efficiency.Neurons must function for decades of life, but how these non-dividing cells are preserved is poorly understood. Using mouse serotonin (5-HT) neurons as a model, we report an adult-stage transcriptional program specialized to ensure the preservation of neuronal connectivity. We uncover a switch in Lmx1b and Pet1 transcription factor function from controlling embryonic axonal growth to sustaining a transcriptomic signature of 5-HT connectivity comprising functionally diverse synaptic and axonal genes. Adult-stage deficiency of Lmx1b and Pet1 causes slowly progressing degeneration of 5-HT synapses and axons, increased susceptibility of 5-HT axons to neurotoxic injury, and abnormal stress responses. Axon degeneration occurs in a die back pattern and is accompanied by accumulation of α-synuclein and amyloid precursor protein in spheroids and mitochondrial fragmentation without cell body loss. Our findings suggest that neuronal connectivity is transcriptionally protected by maintenance of connectivity transcriptomes; progressive decay of such transcriptomes may contribute to age-related diseases of brain circuitry.Adult stem cells coordinate intrinsic and extrinsic, local and systemic, cues to maintain the proper balance between self-renewal and differentiation. However, the precise mechanisms stem cells use to integrate these signals remain elusive. Selleckchem Floxuridine Here, we show that Escargot (Esg), a member of the Snail family of transcription factors, regulates the maintenance of somatic cyst stem cells (CySCs) in the Drosophila testis by attenuating the activity of the pro-differentiation insulin receptor (InR) pathway. Esg positively regulates the expression of an antagonist of insulin signaling, ImpL2, while also attenuating the expression of InR. Furthermore, Esg-mediated repression of the InR pathway is required to suppress CySC loss in response to starvation. Given the conservation of Snail-family transcription factors, characterizing the mechanisms by which Esg regulates cell-fate decisions during homeostasis and a decline in nutrient availability is likely to provide insight into the metabolic regulation of stem cell behavior in other tissues and organisms.Cytokines released during chronic inflammatory diseases induce pro-inflammatory properties in polymorphonuclear neutrophils (PMNs). Here, we describe the development of a subgroup of human PMNs expressing CCR5, termed CCR5+ PMNs. Auto- and paracrine tumor necrosis factor (TNF) signaling increases intracellular neutrophil elastase (ELANE) abundance and induces neutrophil extracellular traps formation (NETosis) in CCR5+ PMNs, and triggering of CCR5 amplifies NETosis. Membranous TNF (mTNF) outside-in signaling induces the formation of reactive oxygen species, known activators of NETosis. In vivo, we find an increased number of CCR5+ PMNs in the peripheral blood and inflamed lamina propria of patients with ulcerative colitis (UC). Notably, failure of anti-TNF therapy is associated with higher frequencies of CCR5+ PMNs. In conclusion, we identify a phenotype of pro-NETotic, CCR5+ PMNs present in inflamed tissue in vivo and inducible in vitro. These cells may reflect an important component of tissue damage during chronic inflammation and could be of diagnostic value.Diffuse large B cell lymphoma (DLBCL) is one of the most common yet aggressive types of B cell lymphoma and remains incurable in 40% of patients. Herein, we profile the transcriptomes of 94,324 cells from 17 DLBCLs and 3 control samples using single-cell RNA sequencing. Altogether, 73 gene expression programs are identified in malignant cells, demonstrating high intra- and intertumor heterogeneity. Furthermore, 2,754 pairs of suggestive cell-cell interactions are predicted, indicating a complex and highly dynamic tumor microenvironment. Especially for B cell lymphomas, a strong costimulatory CD70-CD27 interaction is predicted between malignant and T cells. Furthermore, coinhibitory signals mediated by TIM3 or TIGIT seem to be the main driving force for T cell exhaustion. Finally, we find that chronic hepatitis B virus infection may have a significant impact on tumor cell survival and immune evasion in DLBCL. Our results provide insights into B cell lymphomagenesis and may facilitate the design of targeted immunotherapy strategies.The current model of the mammalian circadian clock describes cell-autonomous and negative feedback-driven circadian oscillation of Cry and Per transcription as the core circadian rhythm generator. However, the actual contribution of this oscillation to circadian rhythm generation remains undefined. Here we perform targeted disruption of cis elements indispensable for cell-autonomous Cry oscillation. Mice lacking overt cell-autonomous Cry oscillation show robust circadian rhythms in locomotor activity. In addition, tissue-autonomous circadian rhythms are robust in the absence of overt Cry oscillation. Unexpectedly, although the absence of overt Cry oscillation leads to severe attenuation of Per oscillation at the cell-autonomous level, circadian rhythms in Per2 accumulation remain robust. As a mechanism to explain this counterintuitive result, Per2 half-life shows cell-autonomous circadian rhythms independent of Cry and Per oscillation. The cell-autonomous circadian clock may therefore remain partially functional even in the absence of overt Cry and Per oscillation because of circadian oscillation in Per2 degradation.Aberrant activation of receptor tyrosine kinases (RTKs) and the subsequent metabolic reprogramming play critical roles in cancer progression. Our previous study has shown that Golgi membrane protein 1 (GOLM1) promotes hepatocellular carcinoma (HCC) metastasis by enhancing the recycling of RTKs. However, how this RTK recycling process is regulated and coupled with RTK degradation remains poorly defined. Here, we demonstrate that cholesterol suppresses the autophagic degradation of RTKs in a GOLM1-dependent manner. Further mechanistic studies reveal that GOLM1 mediates the selective autophagy of RTKs by interacting with LC3 through an LC3-interacting region (LIR), which is regulated by a cholesterol-mTORC1 axis. Lowering cholesterol by statins improves the efficacy of multiple tyrosine kinase inhibitors (TKIs) in vivo. Our findings indicate that cholesterol serves as a signal to switch GOLM1-RTK degradation to GOLM1-RTK recycling and suggest that lowering cholesterol by statin may be a promising combination strategy to improve the TKI efficiency in HCC.Listeria monocytogenes strain 10403S harbors two phage elements in its chromosome; one produces infective virions and the other tailocins. It was previously demonstrated that induction of the two elements is coordinated, as they are regulated by the same anti-repressor. In this study, we identified AriS as another phage regulator that controls the two elements, bearing the capacity to inhibit their lytic induction under SOS conditions. AriS is a two-domain protein that possesses two distinct activities, one regulating the genes of its encoding phage and the other downregulating the bacterial SOS response. While the first activity associates with the AriS N-terminal AntA/AntB domain, the second associates with its C-terminal ANT/KilAC domain. The ANT/KilAC domain is conserved in many AriS-like proteins of listerial and non-listerial prophages, suggesting that temperate phages acquired such dual-function regulators to align their response with the other phage elements that cohabit the genome.Cushing's syndrome is defined by an endogenous or exogenous hypercortisolism. Increased cortisol, as well as increased androgens will have a negative impact on the pulsatile secretion of GnRH, thus leading to an increased risk of infertility. However, pregnancy can occur in a woman with Cushing's syndrome it is a challenging situation, because of the numerous consequences which can be observed in the mother (increased risk of gestational diabetes, hypertension, eclampsia… in addition to the specific complications of hypercortisolism) and in the fetus (intrauterine growth retardation, prematurity). In contrast, Cushing's syndrome can also appear during pregnancy. It is a very rare situation the diagnosis is challenging because of the numerous hormonal changes induced by pregnancy on cortisol levels. The objective of this brief review will be to detail the mechanisms of infertility due to hypercortisolism, the diagnostic methods of Cushing's syndrome during pregnancy, the maternal and fetal consequences of hypercortisolism during pregnancy, and finally the potential means of contraception that can be proposed.The principal signals that drive memory and cognitive impairment in Alzheimer's disease (AD) remain elusive. Here, we revealed brain-wide cellular reactions to type I interferon (IFN-I), an innate immune cytokine aberrantly elicited by amyloid β plaques, and examined their role in cognition and neuropathology relevant to AD in a murine amyloidosis model. Using a fate-mapping reporter system to track cellular responses to IFN-I, we detected robust, Aβ-pathology-dependent IFN-I activation in microglia and other cell types. Long-term blockade of IFN-I receptor (IFNAR) rescued both memory and synaptic deficits and resulted in reduced microgliosis, inflammation, and neuritic pathology. Microglia-specific Ifnar1 deletion attenuated the loss of post-synaptic terminals by selective engulfment, whereas neural Ifnar1 deletion restored pre-synaptic terminals and decreased plaque accumulation. Overall, IFN-I signaling represents a critical module within the neuroinflammatory network of AD and prompts concerted cellular states that are detrimental to memory and cognition.The mammalian microbiome encodes numerous secondary metabolite biosynthetic gene clusters; yet, their role in microbe-microbe interactions is unclear. Here, we characterized two polyketide synthase gene clusters (fun and pks) in the gut symbiont Limosilactobacillus reuteri. The pks, but not the fun, cluster encodes antimicrobial activity. Forty-one of 51 L. reuteri strains tested are sensitive to Pks products; this finding was independent of strains' host origin. Sensitivity to Pks was also established in intraspecies competition experiments in gnotobiotic mice. Comparative genome analyses between Pks-resistant and -sensitive strains identified an acyltransferase gene (act) unique to Pks-resistant strains. Subsequent cell-wall analysis of wild-type and act mutant strains showed that Act acetylates cell-wall components, providing resistance to Pks-mediated killing. Additionally, pks mutants lost their competitive advantage, while act mutants lost their Pks resistance in in vivo competition assays. These findings provide insight into how closely related gut symbionts can compete and co-exist in the gastrointestinal tract.