Toxoplasma gondii Toxolysin Several Contributes to Efficient Parasite Evacuation via Host Cells
Severe cholestatic liver injury diseases, such as obstructive jaundice and the subsequent acute obstructive cholangitis, are induced by biliary tract occlusion. Heat shock protein 90 (HSP90) inhibitors have been demonstrated to be protective for various organs. The potential of HSP90 inhibitors in the treatment of cholestatic liver injury, however, remains unclear. In the present study, rat models of bile duct ligation (BDL) were established, the HSP90 inhibitor 17-dimethylamino-ethylamino-17-demethoxygeldanamycin (17-DMAG) was administered, and its ability to ameliorate the cholestasis-induced liver injuries was evaluated. In the BDL rat models and clinical samples, increased HSP90 expression was observed to be associated with cholestatic liver injury. Furthermore, 17-DMAG alleviated cholestasis-induced liver injury in the rat models, as revealed by the assessment of pathological changes and liver function. In addition, 17-DMAG protected hepatocytes against cholestatic injury in vitro. Further assays indicated that 17-DMAG administration prevented cholestasis-induced liver injury in the rats by decreasing the expression of interleukin (IL)-1β and IL-18. Moreover, 17-DMAG also decreased the cholestasis-induced upregulation of IL-1β and IL-18 in liver sinusoidal endothelial cells in vitro. In conclusion, the HSP90 inhibitor 17-DMAG is able to prevent liver injury in rats with biliary obstruction, and this phenomenon is associated with the reduction of IL-1β and IL-18 expression.Peritoneal dialysis (PD) is one of the most commonly used dialysis methods and plays an important role in maintaining the quality of life of patients with end-stage renal disease. However, long-term PD treatment is associated with adverse effects on the structure and function of peritoneal tissue, which may lead to peritoneal ultrafiltration failure, resulting in dialysis failure and eventually PD withdrawal. In order to prevent the occurrence of these effects, the important issues that need to be tackled are improvement of ultrafiltration, protection of peritoneal function and extension of dialysis time. In basic PD research, a reasonable experimental model is key to the smooth progress of experiments. A good PD model should not only simulate the process of human PD as accurately as possible, but also help researchers to understand the evolution process and pathogenesis of various complications related to PD treatment. To better promote the clinical application of PD technology, the present review will summarize and evaluate the in vivo PD experimental models available, thus providing a reference for relevant PD research.Primary multiple intracranial aneurysm (MIA) is a vascular disease that frequently leads to fatal vascular rupture and subarachnoid hemorrhage. However, the epigenetic regulation associated with MIA has remained largely elusive. Circular RNAs (circRNAs) serve important roles in cardiovascular diseases; however, their association with MIA has remained to be investigated. The present study initially aimed to explore novel mechanisms of MIA through examining circRNA expression profiles. Comprehensive circRNA expression profiles were detected by RNA sequencing (RNA-Seq) in human peripheral blood mononuclear cells. The RNA-Seq results were validated by reverse transcription-quantitative PCR. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses suggested the functions of these circRNAs. A competing endogenous RNA network was constructed to reveal the circRNA-microRNA-mRNA relationship. Among the 3,328 differentially expressed circRNAs between the MIA and matched control groups, 60 exhibited significant expression changes (|log2 fold change|≥2; P less then 0.05). Among these 60 circRNAs, 20 were upregulated, while the other 40 were downregulated. A number of downregulated circRNAs were involved in inflammation. The most significant KEGG pathway was 'leukocyte transendothelial migration'. selleck products The circRNAs Homo sapiens (hsa)_circ_0135895, hsa_circ_0000682 and hsa_circ_0000690, which were also associated with the above-mentioned pathway, were indicated to be able to regulate protein tyrosine kinase 2, protein kinase Cβ and integrin subunit αL, respectively. To the best of our knowledge, the present study was the first to perform a circRNA sequencing analysis of MIA. The results specifically predicted the regulatory role of circRNAs in the pathogenesis of MIA. 'Leukocyte transendothelial migration' may be critical for the pathogenesis of MIA.Glucocorticoid-induced osteoporosis is characterized by osteoblastic cell and microarchitecture dysfunction, as well as a loss of bone mass. Cell senescence contributes to the pathological process of osteoporosis and sodium hydrosulfide (NaHS) regulates the potent protective effects through delaying cell senescence. The aim of the present study was to investigate whether senescence could contribute to dexamethasone (Dex)-induced osteoblast impairment and to examine the effect of NaHS on Dex-induced cell senescence and damage. It was found that the levels of the senescence-associated markers, p53 and p21, were markedly increased in osteoblasts exposed to Dex. A p53 inhibitor reversed Dex-induced osteoblast injury, a process that was mitigated by NaHS administration through alleviating osteoblastic cell senescence. MicroRNA (miR)-22 blocked the impact of NaHS on Dex-induced osteoblast damage and senescence through targeting the regulation of Sirtuin 1 (sirt1) expression, as shown by the decreased cell viability and alkaline phosphatase activity, as well as an increased expression of p53 and p21. It was revealed that the sirt1 gene was the target of miR-22 in osteoblastic MC3T3-E1 cells through combining the results of dual luciferase reporter assays and reverse transcription-quantitative PCR, as well as western blot analyses. Silencing of sirt1 abolished the protective effect of NaHS against Dex-associated osteoblast senescence and injury. Taken together, the present study showed that NaHS prevents Dex-induced cell senescence and damage through targeting the miR-22/sirt1 pathway in osteoblastic MC3T3-E1 cells.